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Motivation

This lecture intends to describe the theory from the foundations [1] up to the
current research front (see e.g. reviews from [2] and recent publications|ffom [3]
and [4]).

Its main emphasis is on mathematical describtion of the theory rather then on
possible applications, seg| [5] for those. Although the intention is to prove all

theorems, some previuos mathematical knowledge (as found in e.d.|[6],![7], [8]
and [9]) is expected.

Quantum information theory is strongly relatedetatanglementtheory:

1. Quantum paradoxies (EPRCBRODINGERCcat, BELL inequalities).

2. Applications in Quantum Information Processing (QIP) (teleportation, cryp-
tography (i.e. for military communications), data compression and quantum
computing).

3. Basic and fundamental aspects of quantum mechanics (quantum correla-
tions).

4. Connections to important challenges of modern mathematics (i.e. theory of
positive maps on Calgebras) which lead to new discoveries in mathemat-
ics.



1 Introduction

We consider two or sometimes three (quantum) systems which we label A, B
and C. They will also be given names of persons: Alice, Bob and Charlie. Each
system has a finite HBERT space and we arrange the systems such, that the entire
HILBERT space can be written as

I = TR Iy dimJZ, =M <N =dimJ7;. (1.2)
We adopt the notation
M
{le)yen v =_Zoaq|q> (1.2)
N
{[f)} e g |1VB>:.2)bj|fj>' (1.3)
]:

The basis used is arbitrary but fixed. All basis changes will be explicitly noted.
Thus any state can be written as

w=Seleelf)=Sclef) emeh (14
1] M

where we will omit the direct product sign in future equations. The dimension
of the combined space is

dimJZ = dimJz, -dimZg = M -N. (1.5)

If Alice and Bob have a system with only two possible eigenstfigsind |1)
(each one is said to have a qubit) then we can explicitly write down states in the
combined HLBERT space:

)= =

Alternatively we can also write the state vectors as vectors of a four dimensional
space:

9= o )A A= 3 )A L.7)
0= (5 ). ma= (7). (19)

[10)1) —11)[0)] = —= (|01) — [10)) (1.6)

1 0
vy) = 0040 = | o - 4 (L.9)
0 0



The translation is done as follows. Write down Alice vector but resbheem-
ponents for each of thied components of Alice. Then write Bobs vector into each
component of this created vector multiplying Bobs components with the with the
corresponding component from Alice. So in the above casgyfpr first write

down |0)g multiplied by 1, then below0)z multiplied by 0.

Instead of describing each state by its wave function it is usually more convenient
to use the density matrix (usually labelpdlinstead, since this concept is more
general and allows to describe mixed state also.

Each operatoD can be written as

0= %O‘He, ®|f;) (el (f] (1.10)

where both Alice{|e) } and Bob{|f;)} have an orthonormal basis:

(alej) = &; (fl ) =8y (1.11)

This way the combined basis #’ = J7, ® 73 is also orthogonal and normal. If
we denote each pair of indices as one inllg« € {1,...,NM} then we can write
the operatoO as

0= gotl|wk><wk/|. (1.12)
k’ !

Def. 1.1 1. pis an operator oy’ = J¢, @ Hg

2. pis hermitian, i.ep = p'. < (o[ (p|w)) = ((¢|p) |w). Written component
wise this meanp,,, = pyy-
Using the spectral theorem we can write

P= 3 Pud (Wi = 3 Ao o (113)

where, are eigenvalues qf and|¢g,) its eigenvectors.

3. p>0<&Vy): (y|p|ly) > 0. This is equivalent to the statement that all
eigenvalues,, > 0.

4. Tr(p) =34 =

The last two definitions allow to interpret the density matrix in terms of probabil-
ities.

Def. 1.2 The Kernel op is defined aK{p} = {|w) € 2# : p|y) = 0} []

INote that this is a linear quantity.



We havep = p' = K{p} is a subspace which is spanned by the eigenvectors with
zero eigenvalue.

Def. 1.3 Range op : R{p} = {|y) € 7 : 3|¢) : plo) = |y)}.

Sincep = p' R{p} is a linear subspace o# spanned by the eigenvectorsmf
with A >0, i.e. ifp|¢,) = |y;) andp|¢,) = |y,) then

p (a|gy) +Blyy)) = alyy) +Blyy). (1.14)

Further sincep = pT we have

Rip} L K{p}. (1.15)
Proof:
Take|y,) € R{p} and|y,) € K{p}. Then3,, p[¢) = |y;) and
(Wolwy) = (W,lp[0) = (pTw,|9) = (py,|¢) = 0-|¢) =0. (1.16)

We call {p} :=dimR{p} the rank ofp. Similar we have kp} := dimK{p}.
Since eqn.[(1.15) we havér)+k(p) = dim.7Z. We can also proof this by explicit
construction:

If we call the eigenvectors gf |¢,) with | = 1,....r(p) with eigenvalues}, > 0
we can writep as

r(p) r(p)
p="> 4l){e] and |y)= Za|’¢|> (1.17)
=1 =1
where|y) is an arbitrary state in §} where at least ong, # 0. Now we can
explicitly construct the statgg) which will be projected ony):

rip) a
x) = ;ZW = plx)=lv) (1.18)

Without proof we make the general remark thak i AT we have RA} 1L K{A'}
and RIAT} L K{A}. We will not need this property.
For this lecture we adapt the notation

dims?
0= % O [K) (K| (1.19)
k, !
dims7#
o' = % O lK)(kl  and thus (1.20)
k, 4
(0" e = O (1.21)



Def. 1.4 Partial transpose:
We again have @ which acts on#, ® ;. If we write

p= % plalda®(i)pkla® (g then (1.22)

]
pla= ”% PKa® D)plila® (g and (1.23)
(PTA)HM =pl,. (1.24)

is the patrtial transpoﬁwith respect to Alice.

As an example we choos#, = C2 and.#; = CN thenp is a N x 2N matrix
which can be written as

p = (100N A+ (I0AL) B+ (DAO) BT+ (IDAA)C  (1.25)

where theN x N matricesA = AT, B andC = C' act in Bobs space. Now if we
explicitly write downp we have

(A B\ 4 T+ (AT B

A B AT BT
pTA = ( B C ) pTB = ( B* CT > (127)
(pTA)TB =p'. (1.28)

Partial transposition is a physically strange operation. Transposition can be un-
derstood as time inversion, so partial transposition means that e.g. Alice inverses
time while Bob does not.

If both Alice and Bob make a local unitary transformation then this transformation
remains unitary even if one of them makes a partial transpose:

U=U,®Uy (1.29)
p"W=U,®UgpU] 0 U] (1.30)
(P A = Uz ®UgpTAUL @ U] (1.31)

Furthermorep Ta > 0 iff (p”e"")TA > 0. Also the trace of a partial transposed state
remains invariant under local changes of basis.

Notice again that the basis remains fixed albeit arbitrary.



As an example consider@® @ CN system:

A?o Aor Aoz . Ao A_grl A§2
p= A?l A%l A pe=1 Ay An A%z (1.32)
Apz A Ax A A Ay

where eacth; is anN x N matrix andA; = Al



2 Entanglement and Separability

2.1 Entanglement of Pure States

Def. 2.1 Entanglement of Pure States
A pure state, i.e. a projectdiy)(y| on a vectory € 4 ® J4), is entangled iff it
is not separable, i.€.y) cannot be written as a product vectoy) = |e, f).

Theorem 2.1 SCHMIDT decomposition
Every|y) € 77, ® 7 can be represented in an appropriately chosen basis as

M

lw) = ;aﬂ% fi) (2.1)

where thelg) (| f;)) form a part of an orthonormal basis i, (73) and g > 0,
a2 =1.

In order to proof this theorem we need the following

Theorem 2.2 Polar (or Singular Value) Decomposition
Every Mx N matrix A can be represented as

A=UAV". (2.2)
where U and V are unitary matrices ang /& a diagonal, real positive matrix.

Proof:
B = AA' is a positive, hermitiaM x M matrix. If B is not singular we can invert
it to construct

U=—"—A (2.3)

U is an unitary matrix because

1 1 1_1
Uut=—AAl— = —_B— =
VB VB VB VB
We can do the same B is singular but in this case we only operate on the range.
SinceB is normal BB = AATAAT = B'B) there exists (by the spectral theorem)
a basis wher® has only entries in the diagonds.= VBdVT with unitaryV and
therefore also

1. (2.4)

VB=V,/BVT. (2.5)

9



Using A = v/BU we haveV \/B_dVTU = A which leads to the desired result when
we renam&/ — U, VU —VTand,/B; — A;.

Using this we are now able to give a proof for ther81IDT decomposition:
Every|y) € J¢, ® st can be written as

M,M
vy =3 Ajlii)
i,]=1
MM MM

= kz_ S UgadaViilili)- (2.6)

1i,]=1
where we used the polar decompositioar the the second line. Singg U, |i) =
&) andy ; Vii[) =g, we get

M
W) = kzlak!ek, fio)- (2.7)

le,) and|f,) form an orthonormal basis i7,, /g, respectively, becauds and

V are unitary.

To give an example we take#, ® #4 C C?® €2, In this case the SHMIDT
decomposition can contain up to two terms, i.e. up to twei8IDT coefficients
ay, a,. Itis obvious thaty) is a product vector ifa, = 0 anda, = 1 or vice versa.

A state with HMIDT coefficientsa; = a, = % is a maximally entangled state.
Denoting{|e,)} = {|f,)} = {|0),|1) } the possible maximally entangled states can
be written as the so calledHBL states

Iwi%:i%ﬂobﬂﬂlw) 2.8)
|¢i>=~§3uowﬂﬂ1n>. (2.9)

Observe that the signs |~ ) and|¢~) can be absorbed in the definition |aD)
and|11) to achieves, > 0 as in the definition.

Def. 2.2 SCHMIDT rank

TheScHMIDT rank is the number of non-vanishingia the SCHMIDT decompo-
sition.

A state is a pure state iff itsc&HMIDT rank is one. Notice that theCBMIDT

rank is unique since there cannot be twoHMIDT decompositions with different
numbers of non-vanishing coefficieffits

3 Suppose there are two decompositions| oy,

s §
=Yalef) and =VYalaf), (2.10)
) i;am i) ) _;a\% i)

10



Def. 2.3 Entanglement for pure states

E(|y){w) = ~Tr(pgInpg) (2.11)

is a suitable measure for the entanglement of pure states.

Remember thapg = Tr, (p) acts inszg only. We can expangg (or p,) in the
SCHMIDT basis

pg = Tra(ly){vl)

=Tra | > aded ) Zq (gl f!)

M
=3 & f)(f (2.12)
K=1
<
pA=k ac g (&l (2.13)
=1
to expresE(|y)(y|) in terms of thea, :
M
E(y)(y)=-Y a&na >0 (2.14)
k=1
Especially
E(ly)(y]) =0 iff a =0V k except oneakozl (2.15)

and we observe th&(|y)(y|) is maximal iff all |g) (e | (or |f,)(f,|) come with
the same weight:

E(Jlyv)(v]) = max =InM iff a = \/—_Vk (2.16)

So E(|y)(y|) is zero for product states and maximal for maximally entangled
states.

with §> s. Because(|g),}, {|fi)g}: {|&)a} and{|f,)g} each form sets of orthonormal vectors
there is|x) , such thatx), € Spar{|&),} but [x) ¢ Spar{|g),} and thus we get a contradiction
becausg (x|y) = 0 from the first decomposition andx|y) # 0 from the second.

11



2.2 Entanglement and Separability of Mixed States

Def. 2.4 Entanglement of Mixed States
A mixed state is entangled iff it is not separable. It is called separable iff it can
be represented as

K

where Ke N is arbitrary, |g) € J#,, | f;) € 7 are arbitrary but normalized and
p > 0with 3K, p? =1

We call the stat@ given above separable because it can be created by Alice pro-
ducing the stateg) with probability p; and Bob correspondingly creatind)

with probability p;. So entangled states are those states that cannot be created
using only local operations and classical communication.

2.3 Entanglement Criteria
Theorem 2.3 PERES
If p is separable thep'™ > Oandp’s = (pTA)T > 0.

Proof:
As p is separable it can be written as

K K
p =.Zl ple) | f) (&l (fi] :; ple)(el®|f)(fi] >0 (2.18)

and we have
K

pla= > P (le(al) @[ f)(f|

K
:-Zl ple’) (& @ [f) (]
K
=2 ple fie, fl=0 (2.19)

Note that the second line is valid becage= (A*)T.
For arbitrary dimensions this theorem is only valid in the given direction. The
only if direction is only valid in special cases:

12



Theorem 2.4 HORODEKCI
In C2® C? or C2® 8 p is separable ifpTa > 0.

The method used here to proof that theorem is the methedlifacting vectors
[10]. We will give the proof in 7 steps.

Lemma 2.1 A statep can always be represented as

[ERN

p=p +Ay)(y| wherep’>0, |y)cR(p) , A<-—7—. (2.20)
(vi5|w)

Proof:
Taking arbitrary|¢) we have

2 1 ?

(o1vil° = (olF v
1
< <¢!p|¢><w\5|w> (2.21)

wherep 1 is defined oveR(p) only and where we used thecBWARTZ inequal-
ity in the second step. Then we get

0< <¢|p|¢><w|%|w>—\<¢|w>|2 (2.22)
2
0< (§|p|¢) — |<<$||iﬁ|r> (2.23)
)
0< <¢|p—%|¢> (2.24)
Vv
y

(the last step is due td¢|y)|* = (9|y)(w]9)). So we havep = p’+ Aly)(y|
with p’ >0 forall A < —+

(wlslv)”
If we choose the maximal\, p’ no longer containg in its range and the rank of
p is diminished by 1:

[ERN

Hp'} =r{p} -1 iff A=

2.25
WiLly) (2:29)

13



Lemma 2.2 If p has positive partial transpositiorp(is a PPT state) and if there
exists a product vector in the rangef|e, f) € R{p}, such thate*, f) c R{pTa}
thenp can be written as

p=p'+Ae f)ef| with p’>0, (p)'A>0 (2.26)

where

1
A < min } , T . (2.27)
<e7f|[_)|e7f> <e*,f|m|e*,f>
The proof is clear using lemnja 2.1.

Lemma 2.3 If p is a PPT state irC? ® CN andp|e, f) = 0thenp can be written
as

p=p +A& )& f| with /\:m (2.28)
where
p'>0, (p')'» >0, (eg) =0 (2.29)
and
r{p'} =r{p} -1, r{(p) "4} =r{pTa} -1 (2.30)

This means knowing a product vector in the kernelpomakes it possible to
diminish the rank op andp A simultaneously.

Proof:

We partially transposée, f|p|e, f) = 0 to get(e*, f|pTa|e*, f) = 0. SincepT™ >0
this impliesp Ta|e*, f) = O}

Becausee) lives in C? we always have a unique orthogo@l: (e|é) = 0.
Partially transposingé*|p Tale, f) = 0 and(ép|e, f) = O we get

(elp|&, f) =0 and (e*|pTA|é", f) =0 (2.31)
and since inC? |&) is unique there exist somh), |h) such that

ple.f) =&h) and pTalé", f) =&, ). (2.32)

4Takep = |y~ )(y~| and|e, f) = |y™") to see that this is not always true fofa # 0.

14



Furthermore
h) = (&lp|&, f) = (&"|pTale", ) = |h). (2.33)

(In the second step we made the partially transposition with respect to Alice which
of course does not changf® € J73).

Now we found|é h) € R{p} and|&*,h) € R{pTA} and we can use these vectors
to rewritep according to lemmga 2.2. But since

Mo = “Bhef = =A (2.34)
P 1 A 1 A T
@hl leh @hle.f) — (f) (& hitle ) "o
~——

&f)

(using egs/(2.32)) one can chodsén lemma 2.2 maximal for botp andp T,
and diminish the rank gb, p '~ simultaneously.

Under which circumstances can we expect to find a vector in the range?of
The following lemma shows that this is always possible {ipR is (at least) a
two-dimensional subspace 6f @ C2.

Lemma 2.4 Every 2-dimensional subspace(f @ C? contains a product vector.

Given [xy), |xp) € C?® C? the question is whether the space spanned by these
two vectors does contain a product vector or not. This is not obvidyg ¥ are

not product vectors.

Proof:

We are searching for a product vecterf) (je) € €2, |f) € C?) in the given two
dimensional subspace.

Of course we can always fing, ), |y,) spanning the two dimensional subspace
orthogonal to the subspace that should contaif): (y;le f) = 0= (y,|ef)
Using a basig|0), |1)} for Alice we can write

e f)=(10) +a|1)[f) (2.35)

Note that the proof below does not depend on the normalization. Using Schmidt
decomposition we can writé € {1,2}):

[vi) = 0)[6°) + 1) 1o) (2:36)
where|¢®) € C? are fixed by the chosen basis ).
(wile f) = (¢ q), \+oc ¢[) |f) = 0 leads to the following matrix equation for

and|f) = (fy,
{(£§>+“(£ﬂ)1(%>:(8)- (2.37)




This equation has a nontrivial solutidrx, |f)} (i.e. we have found a product
vector) iff we can findx fulfilling detM () = 0 which of course is always possible
since this is a quadratic equationane C.

Note that this proof can easily be extendedtoe CN.

Lemma 2.5 If p is a PPT state, i.ep’a > 0, acting inC?® C? andr{p} =2
thenp is separable.

Proof:

r{p} = 2 and by lemma 2]4 there exists a product staté) in the kernel ofp:
ple f)=0.

We use this product state with lemma]2.3 to wpitasp = p’+A|é h) (& h|. Since
r{p’} =r{p} —1=1, p’ has to be proportional to a projector. Singe)"» >0
this projector has to be a projector on a product @tmleich means that we can
write p asp = |m,n)(m,n|+ A|& h)(& h| andp is separable.

Lemma 2.6 Ifin C?® C?r{p} =r{pTa} = 3andp is a PPT state and
3 |e f) e R{p} suchthat|e’, f) e R{pTA} (2.40)
thenp is separable.

Proof:
We can use lemna 2.2 to reduce the ranlpair pTa by 1 (taking the maximal
N), thereby keeping the positivity of both of them:

p=p +Aef)ef (2.41)
r{p'} =r{p}—1 or r{(p')""} =r{pTa} -1 (2.42)

Now by Iemm we can show that or (p’)™» are product states. Byt is a
product state iﬂ(p’)TA is a product state.

Lemma 2.7 If p > 0 acting inC?® C? hasp™ > 0andr{p} =3, r{pTa} =3
thend|e, f) € R{p} such thate*, f) ¢ R{pTal.

5 To see why this holds writp’ = |y)(y/| in the basis of the SHMIDT decomposition ofy)
as|y) = a|11) + ]22). Then

(p)™ = |aP|12)(11) + aB*|22)(12 + Ba*[12)(21) + | B[*[22) (22 (2.38)
and we have thafp’) ™ > 0 only if o = 0 or § = 0 since otherwise
[—a(12]+ B(21]] (p') A [—0*|12) + B*|21)] = —2|af[? < O. (2.39)

On the other hand if (e.gfj = 0 then(p’)™A = |B|2|11)(11] > O.

16



This means that there exists a sngdluch that
p_8|e,f><e7f’20 (243)
pTa—ele’, f)(e" f| > 0. (2.44)

Therefore we can choose an appropriato we can reduce the rank of the den-
sity matrices or its partial transpose by one. Having this we are finished (see

lemmg 2.6).

The proof presented here is not the most simple one but it has the advantage of
being extensible to the 2 3 case. See [11] for a simpler proof and|[12] for the
published version.

Proof:

We use the following notation for this proof:

A B
with A= AT andC = CT.

A andC are invertible. If one of them is not invertible, e@is not invertible and
thus has rank 1 then there exists a ve¢forsuch thaC|f) = 0. Thus

o (g &) (0 )-ean( B )-0 @
-

lws)

thus (y;|p|y;) = 0 and sincep > 0 alsop|y;) = 0. This means|y;) is in the
kernel and thereforB| f) must be zero also. This means

lwe) =D e[f)=I1,f) eK{p} (2.47)

which is a product vector in the kernel and we can apply lefnma 2.3, redpge r
and {pTa} by one and the proof is completed by lemimg 2.5.
We separate the proof into several steps:

1. We can choose the basis in Alice at will:

1 1 1 —a
0= —-— Dy=—— 2.48
O 1+|a12(a) U 1+|a|2( 1 ) (249
Using this choice of basis we have

1 N —a* 1 -
Brew= A(0lp|1)p = rla!z(lﬂ )P< 1 ) = WB(‘X ).

(2.49)

17



Using this transformation we have a quadratic equatiam*iim each com-
ponent ofB. We choosex* such that de = 0. This is possible sincB is
quadratic in* and therefore d& contains a fourth oder polynomial
which has roots irC.

Using this choicé has rank 1.
. Next we change the basis in Bobs space:

1 1
p—>ﬂA®%pﬂA®% (2.50)

This is not a unitary operation but since it is local and keeps hermicity the
separability properties are not changed.

The resulting density matrix is now

p:(S f) (2.51)

Here we introducechew matrixesA and B in Bobs space which resulted
from the previous basis transformations.

. r(p) = 3 means that there exists a vector which fulfills

p< Hi ) =0 (2.52)

where|f), | f) in C2. Using the explicit form op given in eqn.[(2.51) we
get the constraint

1fy=—B'f) or (2.53)

( —gTTU ) eK{p} e (2.54)

(L )-(VB)-(3) e

This means thalf) is a vector in the kernel ok — BB'. SinceA— BB' acts
in a two dimensional space the rankf BB is at most one and thus

A—-BB'=AP  with (2.56)
P=ly)(y| [f)=|y") and (2.57)
(y'|y) =0. (2.58)
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The projectolP is unique up to a phase.

We can apply the same argumentste. The only difference is tha is
exchanged withBT. The result is

A=BB'+AP  P=|y)(y| (2.59)
A=B'B+AP  P=|§)(¥l. (2.60)
If we compute the difference between those equations we have
BB —B'B=AP—AP=A(P—P). (2.61)
The last equality can be seen if the trace is taken on both sides. The trace of
a commutator is zero, the trace of a projector is one. Sol0 (l — i) or
A=A
4. We choose the basis in Bobs space where

BB —B'B= ( AR ) _2(P—P). (2.62)

This choice is possible sin&B" — BB is hermitian and T(BB' — B'B) =
0. Thenewoperators? andP remain projectors since hermicity and rank
are not changed by unitary base transformations.

We now consider the most general states (but disregarding an overall phase
as it is irrelevant since we are only interested in projectors):

~ 1-
vi=( P ) W= Viad ) @od
Using these vectors, we can evaluate €gqn. {2.62) component wise:
AN=2((1=p)—p) (2.64)
—AN=A(p—(1-p)) (2.65)

0=1 (\/1— BvPe'?— /p/1- pe’i‘/’> (2.66)
0=1 («/1— Bv/Pe? — /py/1— pei‘P) (2.67)

This system is solvable ip = ¢ andp = por p=1—p. In the latter case
lw) = |) causingB = B' and thusp = p " which is not the most general
case. Therefore we choope= p andA\ > 0 we hav

AN=2A(1-2p) = p< % (2.68)

A = 0 again meanB = B' which is not the most general case.
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Now we have

_ ( BBTE;;LP 1?) pTa— ( BTB;7L|5 ?IT ) (2.69)
5. VB with r(B) = 1 3 always a unitarK such
KBK'=B. (2.70)
Proof:
SinceB has rank one it can be written as
B=n|f){g| and (2.71)
B" = nl|g")(f*. (2.72)
This means that
KIfy=1g) = (gK"=(f"]. (2.73)

Such a transformation exists becausk it unitary, i.e.KTK = 1 then
(glf) = (f*|g*) = (F*IK|f) = (gIKK]f) (2.74)

Wher~eIZ is an yet unkown linear operator. Comparing both sides we see
thatK = K~ =KT.

Notice that in the following part of the proof it is not sufficient to only claim
that for anyB 3 always a unitar such that

KBK* = BT. (2.75)

For later use we note that (starting with eqn. (2.70))

B=K*B'KT = K*KBK'KT (2.76)
& K'KTB=BK'K. (2.77)

If we defineU = KTKT we can write this a/B = BU.

6. K can be explicitly written as

v [0 1
K:é%(l o)' (2.78)
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Proof:
If we define the real matrix (see eqh. (3.6®))= BB' —B'B = A(P—P)
then we can write using 'K = 1

KMKT = KBB'KT — KB'BK' = KBKTKBTKT — KBTKTKBKT
_ BTB* B B*BT _ —(B*(BT) . (BT)*B*) NV E

:—M:)L(IS—P):<_OA f{) (2.79)

Writing down both sides explicitly we have

- -N 0
- (it kit = (0 3 )
=2 (W)Wl —ly){v]).  (2.80)
Now we assume again the most general parameterization possible:
¢ g 7\ — do Va
K= (Ve ) kim=en( Y ) (e

with g€ R and¢g,,,,0 € [0...2x[. Using eqn.[(2.80) we can now expli-
citly compare the parameters and see thatp has to be fulfilled (sama).
To discovelK we make the most general ansatz:

= (2 3) (vefhar )= (SR avizper )
. é‘%( \/\/15? ) (2.82)

Herea,b,c,d € C. Immediately we see that=d =0 and
b=¢®9 c=4d(®t0) (2.83)

Calculating the conditions using|y) results in the same requirements but
with ¢, replaced byp,, thus we see thap, = ¢, = ¢ has to hold.

The matrix U defined above is now diagonal. We know that
UB— cb 0 b, b, \ _( c'bb, cbb,
0 b*c b; b, b*cb; b*ch,
__( c’bb, Db*cb, \
_ ( il ) _ BU. (2.84)
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We se@that eithel = c or b, = b; = 0. The latter case means that B is di-
agonal and thuBB' — B'B = 0. As has been shown already this conditions
is not fulfilled for an arbitrary case.

Therefore we now require = c and get® = —@. Thus we can write

K — < equ<0 eXF(I(¢_¢)) ) :ei(POGX (285)

?—9)) 0
and furthermore we see that
A 1_ i)~
K|y) :éq’( Vet ) =) (2.86)
K|§) = €?]y). (2.87)

Since a phase fdf is irrelevant we choose for simplicitg, = ¢ — ¢ = 0.

. Rememberirfy(2.54) and[(2.57) we know that

( —l‘;*/l:zﬂ ) €Kir} ( _‘EI;TG,% ) cK{p™}.  (2.88)

If we denotele, f) as the desired product vector and ey as|e) = ( i )

with ze C we have

@elt=( ) )erpy  ein=( Jf) ) erem.
(2.89)

The scalar product between a vector from the range and a vector from the
kernel has to vanish:

(2.90)

(= I( )If) =
f (2.91)

yt|(1—zB' 0
(§|(1-2B)|f) =0

Since the subspace is two dimensional we know the states orthogonal to
lyt). Since we have still available we can require

(1-28)|1) = |y) (1-ZB)|f) ~ ) (2.92)

’Strictly speaking we see only dig) = arg(c) but sinceK is unitaryb andc have to be phases.
8All vectors are in the base corresponding to Bobs (and Alice) last choice of bases.
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which means

1 1 ~

with an still unknownn € C.
From eqn.[(2.86) we know

o) = €°|y) (2.94)
so usingo? = 1 and eqn.[(2.75) we can rewrite egn. (2.93):

1 1 i
B Y7 ? |y
i 1
_ o~ =k
. 1 *
= I(P
n€? ox (1_zBT|"’>) (2.95)
So if we write
1 A )
= (2.96)
=5V ( v,
then we have the following requirement:
vy :é%(‘fi): é‘w(";) 2.97
( Vo ) mEox Vo 1 Vi (2.97)
Since
ViV v, = ve?
V_Z_V_i = vzzvé“”‘” (2.98)

we can now solve both equations fiprand check for consistency:

d? — nd(®-v-9) N n =e0-e+20) (2.99)
d(O+8) _ pe(9-v) =  p=d@6-e+20) (2.100)

Obviously 6 can be chosen arbitrarily. Choosing an appropriate value we
can write

1 1
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We have thus far only computed the relative anglbut have not actually
fixed zitself. So we can now choogesuch

5 1
(e'5,—1> v =0 (2.102)

SinceB has rank 1 (cf. step 1B")? = aB" with a € C. This means

T g =1t f(z)B (2.103)

< f(2)=— (2.104)

and thus we have to solve for evely

(é’g, —1) (1 n %OCZBT) W)=0  (2.105)

= (1-az) (é ,—1) W) +(z— ) <ei‘§,—1> Blly)=0  (2.106)

—_— v
iy
G )

& ¢ +2z(c,—ac)) —Z(ac,) =0.  (2.107)

This equation has a solution fany é and thus there exists always a product
vector in the range gb.

Now we are done. The following table lists all possible cases and the lemmas used
to reduce the rank or to show separability respectively:

r{p} r{pTA} lemma(s)

4 Use lemma 2|1 to reduce eithéps or r{pTa}

Use lemma 2|1 to reduce eithéps or r{pTa}

Use lemma 2|1 to reduce eithéps} or r{pTa}
Because of lemnja 2.7 and Iemﬁ.'& separable
Because of lemma 2/5is separable

Because of lemnja 2/5is separable

X N WWwH
N X wdhwapH

This proof can be extended to thex3 case as well.
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3 PPT Entangled States

3.1 Definition

Def. 3.1 PPT entangled state
A statep is called a PPT (partial positive transposed) entangled state (sometimes
abbreviated as PPTES) iff

1. itis entangled and
2.p"20 (~pTe>0).
Remarks:
e InC2®C2andC?® C° a state is a PPT state iff it is separable.

¢ In systems with more than two particles also more complicated situations
are possible, e.gp’a >0 butp’s < 0,pTc > 0.

e PPT entangled states are also called boundor hidden entangled states be-
cause this type of entanglement is not distillable. See [13] for details.

3.2 A Criterion of Separability

Theorem 3.1 P. HORODECKI
If p is separable then

3 |e f) e R{p} suchthat|e’, f) € R{p'a}. (3.1)

Proof:
Writing p as

K
p= z e fio (e fil- (3.2)
k=1
we see thafe,, f,) has to be in the range pff|and because
.k
PTA=3 Alek. fi) (e il (33)
k=1

e, f,) is in the range op Ta.
Remark: We can also extract a stronger formulation for the theorem out of this

%This holds becausély) € K{p}: 0= (ylp|y) = T 4 [(vle, f)[* < |v) L V|g, f).
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proof:
If p is separable then

3l foderx  RIPY= {8 T bcr, (3.4)
and : Rp™ = [{lefolics ] 35

This means that the set (, f,), |€f, f,) span Rp} and RpTa} respectively.

3.2.1 Example

b0oOO| 0 bo O

ObOO| 0O Ob O

00bO| 0O 00 b

000b| 0 00 O e beo 6
2 >b> .

0000O0| b oo vL¥

boooO| 0 bo O

Ob0OO| 0O O0b O

00bo| YLK oo b

For this state to be a PPT sta@tdas to be positively defined. We can verify this by
showing that the various submatrices are positively defined. We find three types
of submatrices:

(E E) >0 (3.7)
(b) >0 (3.8)
b O b b 0 b 0O O 0
0 b VLD _10 0 o0]+|0 P YLEl-0 (39
b \/ZLET %) b 0b 0 1£b2 %’

By the same method one shop% > 0.
One can show that all the vectors in the kerngb dfave to have the form

1-b
A B,C 0 «kC, —A —B, —C) wherex =4/ ——. 3.10
( ) ) ) Y Y ) ) ) K 1+b ( )
A, B andC are free parameters, i.e. there are three orthogonal vectors in the
kernel. Observe that this construction is not valid in the cask 6f0 where

dimK{p} =6.
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By looking for vectors orthogonal to all these vectors in the kernel we can also
identify the vectors in the range pf These are product states:

1 1 1
‘e>f>:’17a>®’1757?7$+1<>
1 1 1 1 1
= (1, 2 o2 $+K, o, l, % m%—xoc) € R{p}. (3.11)

In the same way we fink, f) € R{pTa}:

|e,f>:|1,[3>®|ﬁ—13+1<, BZ’%’D (3.12)

In order to check ifp is separable we have to find out whether there|s &)
R{p} such thate*, f) € R{pTa}, i.e. if there arax, B such that

11 1 1 11
1,(X®1,—,— — t+K :17B* ®_+K7_a_
‘ > ‘ o 3 > ’ > ‘ﬁ3 ﬁz ﬁ

o2’ o
From Alice’s part we observe tht' = o which means that we get the following
conditions:

1) (3.13)

1 1 1 1 1
+xk=1, 5= ) T o l1=—=+k. (3.14)
(a*)? o of o a

(")’

Using the second (or the third) equation we hafe= o* and we see that has

to be a pure phase; = €, and furthermorex® = 1. By the first equation this
meansk = 0 which givesb = 0 where our construction is not valid. Thus there
exists nole, f) € R{p} such thate*, f) € R{pTa} and (by theorem 3]1) is not
separable for & b < 1 (which means that it is PPT entangled becaguse> 0).

Other examples use the so called unextendible product bases (UPB) [14]. These
are incomplete orthogonal product bases whose complementary subspace does not
contain any product vect

Let |y;) be such an UPB with members then it one can observe that

b= (n—iwfixw) (3.15)

01n ¢3e CBitis easy to see that such a basis is indeed possible. Take 5 orthogonal product
vectors|g, f;), i =1...5. The question is if one can find more product vectors orthogonal to these
such that all the vectors span the whole space, especially if one can find a product vector in the
orthogonal space?

This |e, f) has to fulfill (e, f|g, f;) = (elg)(f|f;) =0 Vi but if (e|e;) = 0= (e|e,) and (in the
best case]f|f;) = 0= (f|f,) then neitherele;) = 0 nor (f|f;) = 0 is possible since Alice’s and
Bob’s space are 3 dimensional only. For explicit examples/see [14].

Also notice that inC2 @ CN there exists no unextendible product bases (with less than 2
members).
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is a PPT entangled st&fy./" is a normalization factor).

3.3 Edge States

Def. 3.2 A PPT entangled staté is called anedge staté for any € > 0 and any
e f)

8 =68—¢le f)e f| (3.16)
is not a PPT (entangled) state (i.e. eith®r# 0 or (5’)TA # 0).

This means that it is not possible to subtract a projection on a product state from
an edge state without loosing the propertyoabeing positive definite and PPT.

By lemma[ 2.2 (which was valid in arbitrary dimensions) this can be put in the
following form:

Lemma 3.1 A PPT entangled state is an edge state iff there existe |e, f) €
R{p} such thatfe*, f) € R{pTa}.

Proof: Iemm’Z states thatpfis PPT and there existe f) € R{p} such that

le*, f) € R{p'a} thenp can be decomposed ps=p’+ Ale, f) (e, f| keepingp’

positive definite and PPT. Since by definition the latter is not true for edge states
no suchle, f) can exist.

The importance of the edge states in the discussion of entangled states comes
from the possibility to decompose PPT entangled states into a separable state and
an edge state as stated in the following lemma which we will not proof here. A
proof can be found iri [10]/ [15].

Theorem 3.2 LEWENSTEIN, SANPERA, BRUSS
Every PPT entangled state can be written as

p=2Aps+(1—A)8 (3.17)

whereps is separable and is an edge state and < 1.
There exists an optimal decomposition of this form for whidh maximal.

Notice thatA being maximal means that we put all the information about the
entanglement in the edge state. The advantage of the edgé sistgposed tp

is that is has generically lower rank.

Figure[] illustrates the space of all states, separable states, PPT states and PPT
entangled states. All these sets except the set of PPT entangled states are convex
and compact (i.e. bound and closed). Because of their definition the edge states
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All States

PPTES D

PPT States

Separable States

]

Figure 1: Schematic representation of the space of separable states, entangled
states and the PPT entangled states.

Figure 2: lllustration of lemmfp 3,2 (left) and leminal3.3 (right).

29



can be found on the boundary between the PPT entangled states and the PPT
states.

The sump = aps+ bod is found by connectings and o by a straight line and
dividing the line in the rati@/b such thap is closer tops if a > b and closer t@

if b> a. The left part of figur 2 illustrates the decomposition given in lefnmla 3.2.
That such a decomposition always exists is already obvious from the fact that all
the sets are convex.

If we don’t care about the PPT entangled states and just look at separable and
entangled states it is clear that a similiar decomposition has to exist (c.f. also the
right part of figurg R). The resulting edge state then lies on the boundary of the
entangled states such that subtracting a product projector would result in a not
positive definite state. Thus we have the following theorem.

Theorem 3.3 LEWENSTEIN, SANPERA, BRUSS
Every entangled state can be written as

p=Aps+(1—2)8 (3.18)

whereps is separable and > 0 has no product vectors in its range and< 1.
Again there exists an optimal decomposition.

11 Because T mapsl to 1 and the UPB to another UPB we hav& > 0 and furthermore is
entangled because by the definition of the UPB there is no product vector in the range.
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4 Entanglement Witnesses and Positive Maps

4.1 Entanglement Witnesses

4.1.1 Technical Preface

For several proofs we will need the following
Lemma 4.1 Tr(pTac) = Tr (po'a)

Proof:
Using the usual notation

G:ZGijkl|ij)<kl| (4.1)
o'a= Zo”kl|kj>(il| (4.3)

we have
Tr (p"A0) =Tr< S pllkii |o""’k,|,|i'j’><k’l’|>
ikl K
_ pij Gilk_
”% kl J

=Tr< > p“'kmj><kl|o""’k,|,|k’j’><i’l’|>
ik’ kN

I
=Tr (pGTA) . (4.4)

Observation:

The space of linear operators acting 641 (denoted by#(.7¢)) is a HLBERT
space itself with the (ECLEDIAN) scalar product:

(AIB) = Tr (ATB) ABE B(H) (4.5)

This scalar product is equivalent to writidgandB row wise as vectors and scalar
multiplying them:

dim.s#2

Tr(ATB>:%Ai*j = 3 ab (4.6)
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4.1.2 Entanglement Witness

Central to this and the following sections is the#N-BANACH theorem which
we will present here limited to our situation and without proof (see e.g. [16] for a
proof of the more general theorem):

Theorem 4.1 Let S be a convex compact set in a finite dimensi@riACH
space. Lep be a point in the space wiih ¢ S. Then there exists a hyperple
that separatep from S.

Figure 3: Schematic picture of theAHN-BANACH theorem. The (unique) unit
vector orthonormal to the hyperplane can be used to defheandleftin respect
to the hyperplane by using the signum of the scalar product.

Figure[3 motivates the introduction of a new coordinate system located within the
hyperplane (supplemented by an orthogonal vastevhich is chosen such that it
points away fron§). Using this coordinate system every statean be character-

ized by its distance from the plane by projectimgpnto the chosen orthonormal
vector and using the trace as scalar product, i.€WJr). This measure is either
positive, zero or negative. According to our choice of basis in figure 3 every sep-
arable state has a positive distance while there are some entangled states with a
negative distance. More formally this can be phrased as:

Def. 4.1 A hermitian operator (an observable) W is called an entanglement wit-
ness (EW) iff

I Tr(Wp)<o0 (4.7)
VoeS  Tr(Wo)>0. (4.8)

Later on we will choos&V such that the set gf detected byV is maximized by
choosingW tangent tcS.

127 linear subspace with dimension one less than the dimension of the space itself.
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0 EW1
prT P,

NG ™

Figure 4: Schematic view of the IEBERT-space with two stateg, andp, and

two withesse$V1 andW2. W1 is a decomposable EW and it does only detect
NPPT states likp,. W2 is a nd witness and it detects also some PPT states like
p,. Note that neither witness deteetis entangled states.

Def. 4.2 An EW is decomposable iff there exists operators P, Q with
W=P+Q'a P.Q>0. (4.9)
Lemma 4.2 Decomposable EW cannot detect PPT entangled states.

Proof:
Let 6 be a PPT entangled state and BEWbe decomposable then

Tr(W3) = Tr(P§) + Tr (Q'28) = Tr(P§) + Tr (Q&») > 0. (4.10)
Here we used lemnia4.1.

Def. 4.3 A EW is called non-decomposable entanglement witness (nd-EW) iff
there exists at least one PPT entangled state which the witness detects.

Using these definitions we can restate the consequences ofaths-BANACH
theorem in several ways:

Theorem 4.2 1. p is entangled ifH a witness W such thatr (pW) < 0.
2. p is a PPT entangled state #fa nd-witness W such that (pW) < 0.
3. o is separable iff EWTr(Wo) > 0.

From a theoretical point of view this theorem is quite powerful. However, it is not
useful for constructing witnesses that detect a given gtate
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4.1.3 Examples

1. A decomposable witness

W =P+Q'a (4.11)
detects all separable stai@si.e.
YoeS  Tr(Wo)>0. (4.12)

Proof:

If o is separable then it can be written as a convex sum of product vectors
(see eqn[(2.17)). So if any product vecterf) is detected any separable
state will be detected also.

Tr(Wle f)(e f|) = (e f\W|e f) (4.13)
= (e, f|Ple, f)+ (e, f|Q"Ale,f)  because  (4.14)
>0 >0

(e, f|Qale, ) =Tr (Q'ale, f) (e f|) = Tr(Qle", f)(e", f|) > 0 (4.15)
Here we used lemnja 4.1 afdQ > 0.
This argumentation shows that= Q' is a suitable witness also.
If we take the simplest case £2) we can use
1

97) = 75100 +]11)) (4.16)

to create the density matrix

300 3 3000
| 0000 r o030
=looo0o0 Q=10 100 (417)
1 1
5 00 3 0003

One can quickly verify that indeed/ = QT fulfills the witness require-
ments. Using

¥ = 5 (03~ 10) (4.18)
we can rewrite the witness:
W= QM= (12 )y ) (4.19)
This witness now detecty ™ ):
Tr (Wi ) (v ]) = (4.20)

2
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Def. 4.4 The (decomposable) EW W is tangent to S (to PafE S (exists
ap € P)withTr(Wo) =0 (Tr(Wp) =0).

The witness chosen in eqn[ (4,19) is tangentSamecause for any state
le,et) (i.e. |01)) we have a local unitary transformation

U®U|10)=ee")  and (4.21)
UaUly ) =€e?ly") (4.22)

becausdy ™) is a singlet state which must be transformed into a singlet
state (with a possible phase) under any unitary transformation.

Now we can calculate

(e ly )y lee’) = (YU Uy )(y~[UcU|0Y)

=iy )y oy =2 (4.23)
Tr (W|e,é><e,é|) - % (1— 2%) —0. (4.24)

. Letp be a PPT entangled state with dimensix N (andMN > 6) then
we can writep according to theorein 3.2 as

p=NAps+(1-N)§ (4.25)

wherepg is a separable state afids an edge state and< 1.
Lemma 4.3 If and-EW W detects then it also detect§, i.e. Tr (W) < O.

Proof:

0> Tr(pW) =Tr (ApgW) +(1—A) Tr(8W) > (1—A) Tr(8W) (4.26)
N !

>0
Therefore we can concentrate on edge states.

. We are now looking for nd-EW for edge states.

Def. 4.5

W =P 5+ )T (4.27)

PK{aTA}

is called a pre-witness. Herq@(s} is a projector on the kernel of the edge
states.
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Lemma4.4 Ve f) (e f|W|e f)>e>0.

Proof:
Let’'s suppose there exists a state which fulfills

0= (e f|\W|e f)  then (4.28)

0= <e7 f|PK{5}‘ev f> + <e*7 f’PK{STA}’e*, f) (429)

Since any projector fulfill® > 0 we must have
Pesyle f)=0 = e, f) e R{6} (4.30)

PK{STA}|e*’ f)=0 = e*, f) € R{8TA}. (4.31)
This contradicts the properties of edge states as shown in [¢mima 3.1.

So if we denote

0< g = TQLr;(e, f|\Wle, f) (4.32)

we can construct a whole family of entanglement witnesses:
W=W-¢el 0<e<g, (4.33)
W is non-negative on separable states
(e, f]\Wle, f) = (e f\W—¢lle f) >e—e>0 (4.34)
and negative on the edge state

Tr(W§) =Tr(W8) —e = —¢ (4.35)

because if we denote a basis of& (K{5Ta}) with [k) € CN@CM (k) €
CNeCM),k=1,...,dimK{8} (k=1,...,dimK{8 A}) then

Tr (PK{6}5) —Tr (%|k><k’|6> :é(k’]5|k>:0 (4.36)

1) _ T _ N /UVIST
Tr (PK?STA}S) = Tr (PK{ETA}S A) =Tr (z 1K) (K| A)

kk’
— Z<R’\6TA|R> = 0. (4.37)
kk/
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4.2 Positive Maps
4.2.1 Introduction

So far we only considered states imIHERT spaces and operators acting on these
states. Now we go one step further and look at the so-called maps which can be
seen asuperoperatorsnanipulating the operators inlEBERT space. Throughout

this section we will denote the variousiIERT spaces by#g, /¢ and so on and

the set of linear operators acting off; as% (//5). We start by defining linear
maps:

Def. 4.6 A linear, self-adjoint mag is a transformation

e B(Hy) — B(H) (4.38)
which
e islinear
e(aO,+B0O,) = ae(0;)+ Be(0,) VO,,0,c B(Hg) «,p e( @39)
4,

e and maps hermitian operators to hermitian operators:
e(0") = (e(0)" VOeB(A). (4.40)
For brevity we will only write linear map instead of linear self adjoint map.
The following definitions help to further characterize linear maps.
Def. 4.7 A linear mape is called trace preserving if
Tr(e(0)) =Tr(0O) VOe A(Hp). (4.41)

Def. 4.8 Positive map
A linear, self adjoint majg is called positive if

VpeB(H) with pf=p, p>0 = g(p)>0 (4.42)

This means that positive maps have the property of mapping positive operators
onto positive operators. It will turn out to be important to consider maps on the
tensor product of a positive operator acting on one subsystem A and the identity
acting an another subsystem B. In this case we define

Def. 4.9 Completely positive map
A positive linear magE is completely positive if for any tensor extension of the
form
e B(HRA) — B(H\RH
( A E;-:)/ _ ]IA((ggA C) (443)
¢’ is positive.
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4.2.2 Examples

Hamiltonian evolution of a quantum system Let O € #(s7;) andU an uni-
tary matrix and define by

€. ‘@(‘%ﬂA) - ('f?) (4.44)

g(0) = UO

As an example for this map consider the time-evolution of a density matrix. It can
be written ap (t) = U (t)p(0)UT(t), i.e. in the form given above.

Clearly this map is linear, self-adjoint, positive and trace-preserving. It is also
completely positive because forOw € 2 (7, ® )

(Myeew=(1,oU)wl,oU") =0wd’ (4.45)

whereU is unitary. But then(y|UwUT|y) > 0 iff (w|w|y) > 0 (since positivity
is not changed by unitary evolution).

Hamiltonian evolution of a system and its environment Letp € # () (the
systeando € Z (#,) (theenvironmentbe positive operators and define

e: B(AMy) — B(A)

e(p) = Try(Uowpul) (4.46)

whereU € &4 (%@%) is unitary. This map describes the time-evolution of a
system together with the environment. It is obviously linear, self-adjoint and it is
also trace preserving because

Tr(e(p)) =Trg (TrA (UG@[)UT)>
:Tr(Uc@PUT>:Tr<G®PUUT):Tr(G®P)~ (4.47)

K RAUS’ representation of completely positive maps Consider a set of matri-
ces{A : sz — s} and the map

e B(Hy) — PB(Hp)
ep) = I APA

This map is obviously linear and self-adjoint. It is trace preserving if and only if

(4.48)

_iAJAi =l (4.49)
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It is positive
(Wle)ly) = 3 (WIAPA W) = 5 (Avip|ATy) >0, (4.50)

completely positive because

(Ia@ew= 3 (1,0 A)W(1,0A) (4.51)

and

(WIIa@ewy) = 5 (La@ A)yw/(L,@Al)y) > 0. (4.52)

Transposition An example for a positive but not completely positive map is the
transposition T defined as:

T #B(Mg) — #(Hp)
T(p) = p'

Of course this map is positive but it is not completely positive because

(4.53)

I, T)w=w's (4.54)

and we know that there are states wittr 0 butp e < 0.

4.2.3 Decomposable Maps

Def. 4.10 A positive map is called decomposable if and only if it can be written
as

E=¢g+¢&T (4.55)

whereg,, €, are completely positive maps aiids the operation of transposition
introduced in section 4.2.2.

Theorem 4.3 HORODECKI
A statep € # (%”A® %’g) is separable iff for all positive maps

e B(Hg) — %(%”C) (4.56)
we have

(Iy®e)p > 0. (4.57)
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Proof:
[=] p is separable so we can write it as

P
= 3 pdadled = zpkrek (6 @ 1) (f (4.58)

for someP > 0. On this statgll, ® €) acts as

P
(Ia@e)p = kzl Pleo (el @& (Ifa(fl) =0 (4.59)

where the last follows becausgf,)(f;| > 0 ande is positive.
[«=] This direction is not as easy as the only if direction. We will prove it in

sectiorf 4.2 4.
Note that theorern 4.3 can also be cast into the following form:

Theorem 4.4 HORODECKI
A statep € # (%@jfg) is entangled if and only if there exists a positive map
e: B(Hy) — B () such that

(I,@e)p 20. (4.60)

4.2.4 Jamiotkowski Isomorphism

In order to complete the proof of theor¢m|]4.3 we introduce first @ JLKO -
wskKI isomorphism|[[1/7] between operators and maps.

Given an operatoE € 2 (#; © #,) and an orthonormal product basksl) we
define a map by

£ B(A) — @(% (4.61)
% sctKil1E[Kolo) e (1) catkil P Ks) gl
kKo |

2

or in short form

e(p) =Trg (Ep's). (4.62)

This shows how to construct the magrom a given operatoE. To construct an
operator from a given map we use the state

M
V= elie (4.63)
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(whereM := dim J73) to get
M(Iy®e) (ly")(y'|) =E. (4.64)
One can see this in the following way:

(Ig @) (lv")(v)

M

= (Iy ®¢) (% Z B’|i><i/|B’®B|i><i/|B>

i1'=1
1
M.

D gg 'l
1

® Z sc(kl1[E[KlL) aelkel1)ge etkalol 1) pgii’l)
kplpKool,

TFMZ

il
)

M

’ :1| gl |®|Z sl ENV L) gel)e sl

||—\ Z -

D(lL])E Z li"L,)(i'1,]) = (4.65)

Now we can construct the map from the operator and vice versa. This relationship
has the following properties:

Lemma4.5 1. E> 0iff € is a completely positive map.
2. E is an entanglement witnessdffs a positive map.
3. E is a decomposable entanglement witnessigfdecomposable.

4. E is a non-decomposable entanglement witnegsigfnon-decomposable
and positive.

As an example we will give a proof of the "only if* direction of the second state-
ment. LetE € # (7 ® #) be an entanglement witness. Theenf |E|e, f) > 0.

By the AMIotkowsKI isomorphism the corresponding map is defined(@g =

Trg (EpTe) wherep € % ().

We have to show that

c(9le(p)l9)c =c(#|Trg (EpTe) [9)c =0 Vlg)c€ste.  (4.66)
Sincep acts in Bobs space we get (using the spectral decompositioh of
p=3Alw)wl ~ pTe= Ay ) (¥ (4.67)
I |
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where allA; > 0. Then
c(0le(p)|9)c = (9| zTrB (EAlv ) se(vil) 19)c

=3 Aiac(Wi' OIEIY, 0)gc > O. (4.68)

We are now able to proof the- direction of theorer 4|3 or, equivalently, the
direction of theorem 4}4. We thus have to show that talgpgto be entangled
there exists a positive map: % (#,) — % () such that(e ®Ig)p is not
positive definite.

If p is entangled then there exists an entanglement withgssuch that

Tr (WagPpg) < O (4.69)
Tr (Wpg0Oag) > 0 (4.70)

for all separables,g. W, g is an entanglement witness (which detgets) iff Wiy
(note the complete transposition!) is also an entanglement witness (which detects
pAsl] We define a map by

er B(A) — B(H)
e(p) = Tra(Wieps)

where dim¢ = dim.J7; = M. Then

(4.73)

(e®1g)(Pag) = Trp (W/ICPZ§> =Tra (WATCCPAB) = P (4.74)

where we used that Lemria .1 ane=Tr jo T..
To complete the proof we will show that.g # 0. With the maximally entangled

13 This holds because
(ef\Wiglef) = (' f*|Wygle"f*) >0 (4.71)
(soW,; is positive on product states whe¥; is) and
Tr (WigpAg) = Tr (WagPag) <O (4.72)

(it detectspg).

42



state|y ™) g = Tlm 5, |ii)cg Where{]i)} denotes a real, orthongonal basis we find
1 . .
ca(W [T (WATCCPAB> ¥ )ce= M > calii[Try (WATCCPAB) > lil)ce
I J
1 : . , ,
= 2T (clivagli)cefilpaglie)

MZTVA iMcli)cglilPaglide)

[ =

=31 2 T (Tre Wacliec(il) Trs (Pagl i)
7

= o Traac(Wacpas Y licslil Y 11)acil)

1CB ch

1
=31 Tag (WagPag) < O. (4.75)

This concludes the proof that there exists a raayith £(p) # 0.

'_\

4.2.5 Comparison of Witnesses and Maps

In this section we developed a strong relation between entanglement witnesses
and maps. Notice that an entanglement witness only gives one condition (namely
Tr(Wp) < 0) while for a mape ® I5)p has to be positively definite, i.e. there are
many conditions that have to be fulfilled. Thus a map is much stronger.

This can also be seen from the fact that if the map dejggtsi.e. if

Tra (WacPps) = s <O (4.76)
then it detects also
MgPasMs = Pag (4.77)

whereMg is invertible (detMg) # 0). This operation in general changes the trace
so it corresponds to a partial measurement. NoticeMiainly acts in Bobs space
and thus

T ~ ~
Tra (Wac (Pe) ™) = Phc = MacaMy. (4.78)
Then if there is ay) € 7 such that
(¥lpgclw) <O (4.79)
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it follows that

~ _ -1
Wp'eclv) <0 with |y') = (M) "lw) (4.80)
because
15wt (vt
(¥IMg Mg PacMi (ME) w) <0, (4.81)
l" ﬁ—/

1

i.e. the map also deteck8zp,gM]. A map that detects one entangled state thus
detects a complete family of states. This means that given a witness that detects
pag We are able to construct a corresponding map that detects nqt gnfgnd all

the other states detected by the witness) but klgo,sM which does not have

to be detected by the witness since it is in general not possible to say whether

Tra (WagMgpagMi) <0 or >0, (4.82)
While the witnesses are much weaker in detecting entanglement we will show

in chaptef B that this concept is able to provide a more detailed classification of
entangled states.
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5 Classification of Separable States, Entanglement
Witnesses and Positive Maps

To classify separable states, entanglement witnesses (EW) and positive maps (PM)
we want to remind the reader especially of theofen 3.3 and defifitipn 4.4. We
denote the space of seperable states ®itind the space of PPT states with
whereS C P. The following classification is based on [15].

Lemma 5.1 Let § be an edge state and W= P + Qs with R{P} = K{§} and
R{Q} = K{8Ts} then

W =W, —¢el (5.1)
is an non-decomposable EW for

O<e<g= ‘inff>(e, flWsle, f). (5.2)
e

As shown in eqn[(4.33V is a witness which detects the PPT entangled edge state
8 and is thus non-decomposable (by definifior} 4.3).

Lemma 5.2 The states is separable iff for all EW’s tangent to B (Wo) > 0.

The direction=- is fulfilled simply by definition of the witness. So we only have
to show the other direction.

Proof:

Supposes ¢ S Then3aW with Tr(Wo) < 0. Now we can calculate

£ = ‘inff>(e, flWle f) > 0. (5.3)
e?

If &5 =0 thenW is tangent ts. But we required TfWo) > 0 for anytangentv
which contradicts the assumption(Wo) < 0.

If €, # 0 thenW =W — g, is tangent t&5. But we required T(Wo) > 0 for any
tangentV which contradicts the assumption(Wo) < Tr(Wo) < 0.

This leads to the following

Lemma 5.3 If a decomposable witness W is tangent to ppdhen for any de-
composition as in lemnja 3.3 W must also be tangent todPaaid simultaneously
to S atp,

Proof:

Tr(Wp) =0=Tr(W (Apg+(1—-A)3))
=ATr (Wpg) +(1—A)Tr(W§) >0 (5.4)
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The first addend is positive becaysgis separable and the second addend is pos-
itive becaus&V is a decomposable witness adids a PPT state (c.f. eqr. (4]10)).
Thus Tr(Wpg) = Tr(W8) = 0. Note that the figures| 1] 2 ahdl 4 are therefore
misleading.

Prop. 5.1 If an EW W which does not detect any PPTES is tangent to P at some
edge stat® then it has the form:

W=P+Q's (5.5)
with R{P} C K{8} andR{Q} C K{&Ts}.

Proof:
If W does not detect PPTES then it has to be decomposable, i.e.

W=P+Q's. (5.6)
Since THWé) = 0 andP,Q > 0 we must have TiPo) = 0 and
Tr(Q's8) =Tr(Q35's) =0 (5.7)

which means is orthogonal to the range @ (i.e. it is in the kernel) an@ is
orthogonal to the range @'s.

Prop. 5.2 Any nd-EW W has the form
W=P+QB—¢l  with (5.8)
O<e< |inff><e,f\P+QTB]e,f> (5.9)
e7
and there exists an edge statdor which P, Q fulfill
R{P} C K{5} R{Q} CK{3Ts}. (5.10)

Proof:
Consider an EW

W(L) =W+211 (5.11)

which is by Iemml decomposable for- A, (callede, there) and non-decomposable
forallA < 4,. Soforanyd < A, it detects at least one PPTEBS. Since the set of
PPTES is compact the seriesmf converges to the PPT entangled st@%oe By
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constructiodV(4,) is decomposable and thus does not detect any PPT entangled
states (lemmfg 4].2) which means that

Tr (W(;Lo)p%) ~0 (5.12)

soW(4,) is tangent tdP at Py Thus by Iemm3 there exists an edge sbate
with

Tr (W(2,)8) = 0. (5.13)
By propositior] 5.]L we know

W(1,) =P+Q's (5.14)
and thus

W=P+Qe—¢l (5.15)

with e = 4,. HenceéW is non decomposable for all@ e < A, with R{P} C K{d}
and RQ} C K{8s}. Using lemma 5]1 we know

Ao = |inff><e, flWsle, f). (5.16)
e7
Prop. 5.3 As an extension to propositipn 5.2 we consider a nd-EW W of the form
W=P+Qe—el  with (5.17)
0<e§|inff><e,f|P+QTs|e,f> (5.18)
e

and someHILBERT spaces’7; and .z, which fulfill
R{P} L 7 R{Q} L %, (5.19)
1. There exists no vecte, f) € 7% such thate, f*) € 7.
2. IfP, (P%) is a projector ontos#; (72]) then

R{Trg (P, )} =R{Tr (Py. )} (5.20)
R{Trs (Py, )} = R{Tr, (P%)*}. (5.21)
3. For xe {a,b} we have
dimJ# > max[r{TrA <ijx> b r{Trg (P%) }] . (5.22)
4. Conjecture: There exists no product vedeif ) with
(& f|Pylef)=0 (5.23)

where xe {a,b}.
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5.1 Separability in2 x N Composite Quantum Systems

We will now focus on quantum systems@f ® CN dimensions. An example of
such a system is a two level atom coupled to an harmonic oscillator. To learn about
separability of these states we will again make use of the method of subtracting
vectors (see Sectidn 2.3). The results presented here can be found in [18]. In
what follows we will always denote an orthogonal basi§thas{|0),|1)} and an
orthogonal basis itN as{|1),...,|N)}.

Since we want to subtract product vectors fromt is important to know in which
cases such product vectors can be found in the kernel or the rapgd bérefore

we start with

Lemma 5.4 Any subspace? C C?® CN with dim(#) =M > N contains an
infinite number of product vectors. If M N it contains at least one product
vector.

Proof: Let
{lvi),i=1,....2N—M} (5.24)

be a basis in the orthogonal complemeng6t We can write it, using the orthog-
onal basis specified above, as

N
i) = [Ayl0.k) +By[1.K)] (5.25)

with AandB being(2N —M) x N matrices. We can always write a product vector
e f) e C?xCN as

N
e )= (a|0)p+[Dp) @ Y filklg, o€ CU{w}, feC. (5.26)
k=1

There exists a product vector i’ iff there exists a solution ofy;|e, f) =0, i.e.
if all |y;) are orthogonal toe, f). This conditions yields

(aA*+B*) f=0. (5.27)

In the caseM > N the number of variables is bigger than the number of equa-
tions and thus there exists a solution for every gieen.e. we can find an in-
finite number of solutions. Favl = N we can find nontrivial solutions only if
det(aA* + B*) = 0 but since this is a polynomial i a solution withae € C can
always be found.

Takinga € R, i.e.ax = a* in the caseM > N we immediately get
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Lemma 5.5 Any subspace? C C?® CN with dim(.#) =M > N contains an
infinite number of product vectors of the form

e, f)  where &) =|e). (5.28)

In the following we will work with two subspace#;, 7, € C2@ CN. Especially
we will chooses#, = R{p} and./#, = R{pTa}. Furthermore leM, = dim .77,
M, = dim 7. We define the orthogonal subspaces

Kyp= {|‘/’illf>= i ,=1...,2N— MLZ} (5.29)
where
1,2 N 1,2 1,2
ly; >=kzl [Aik’ 0,k) + By |1,k>} (5.30)

with (2N — M ,) x N-matricesA andB.

Lemma5.6 1. IfM;+M, > 3N then there exists an infinite number of product
statesle, f) € 77 such thate’, f) € J2,.

2. If M; +M, < 3N then there exists a product stae f) € 7 such that
e, f) € 7, if we can find anx such that there are at most-N1 linearly
independent vectors among the following vectors:

{a(wiH10) + (wi'[1), o (WP[0) + (wf[1) } (5.31)

Proof. Because the subspaces orthogona#fand.’Z, are spanned byw) and
|w?), respectivelyle, ) has to fulfill

(yllefy=0 and (y?le*, f)=0. (5.32)

Writing |e, f) as in equatior{ (5.26) we have
[OC(A]')*—F(B]')*} 1‘:‘
[a*(AZ)*_'_(BZ)*} 1‘:’

0 (5.33)
0, (5.34)

which can be read adNd- M, — M, equations forf. In the caseM; + M, > 3N
there are more parameters then equations and there exists a solutions far each
i.e. for eache).

ForM; +M, <3N consider th¢4N — M, —M,) x N dimensional matris (c, oc*)
composed ofx(Al)* + (BY)* and o*(A?)* + (B?)*. There exists a solution of
(5.33]5.34) only if the rank of this matrix is smaller thidn This is the condition
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imposed in the lemma. It is interesting to further investigate the conditions that
have to be fulfilled to obtain a solution. In the casé/Qf+ M, = 3N this condition

is deM(a,a*)] = 0 for someoa. The determinant is a polynomial of degree
2N —M, inin o and of degreel® — M, inin o*.

There is no way to know in advance how many roots such a polynomial has,
nor if it has roots at all. E.gea* 41 = 0 has no solutions while: — (a*)? =

0 has infinitely many (all real numbers). B # P it is possible to reduce the
equationP(a,*) = 0 to an equatiorQ(a) = 0 containing onlya by solving
P*(a,a*) = 0 for a* and substituting intd(o, ™). In the end however it has

to be checked whether the solutions@(fr) = 0 fulfill the original equation. As

an example considé( o, *) = (a*)?> — & = 0. ThenP*(a,a*) = o> — a* =0

and thusa* = o2, Substitution leads tee* — oo = 0 which has the four solutions
(0,1,e7127/3 €27/3) These are indeed also solutiong &d')2 — o = 0.

If M; +M, < 3N then all theN x N-subdeterminants dl (o, a*) have to vanish

(i.e. the determinant of the matrix build from the fil$trows, the determinant

of the matrix build from the firsN — 1 rows together with théN + 1) row and

so on). This implies that several polynomialsaranda* have to have common
roots.

The main theorem of this chapter makes a statement on the separability of PPT
states supportfon €2 CN. For this we first note

Lemma 5.7 If p is supported or>? @ CN thenr{p} > N.

Proof: Let us assumg{p} < N. Then dimKp} > N and from lemma 5|4 we
know that there exist a product vecterf) € K{p}. Now we can use lemnja 2.3
to see that for somgg) we can write

p=pr+NET)(8f (5.35)

such that {p5} = r{p} — 1 andp, is still PPT.p) is supported or{’? @ CN-1.
Repeating this we can subtract more projectors on product vectors until fmally
is written as a sum of{p} such projectors. But since we assuméd}r < N,
there surely is a vector in Bob’s space orthogonal tehich is a contradiction to
the assumption that is supported o2 ® CN,

In the case §p} = N it is furthermore possible to make a statement about the
separability ofp as given in the following theorem:

Theorem 5.1 Let p be PPT and supported ab? @ CN. If r{p} = N thenp is
separable.

14 A statep acting inC?® CN is supported or®? @ CM if the minimal subspace?” C CN
such that Rp} C €C?® 2 has dimensioM.
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Proof: The proof is given by induction: The cae= 1 is clear. Now assume
that the theorem holds fod — 1. Then if {p} = N then dimK{p} = N and from
lemmd 5.4 there exists a product ved®@rf ) in the kernel ofp. Then, using again
lemmd 2.8, we can write

p=py+AET)Ef| (5.36)

py has rankN — 1 and is supported a2 CN~1 and thus we know it is separable.
There are two easy consequences of this theorem and the last lemma:

Lemma 5.8 If p is separable or”? @ CN then it can be written as a convex sum
of projectors on N product vectors.

Lemma 5.9 If p is PPT, supported oft> @ CN andr{p} = N thenr{p'a} = N.

Finally we can make a statement about separability in the special cage ithat
not only PPT but alsp = pTa:

Theorem 5.2 If p is supported orC? © CN andp = pTa thenp is separabl&?

Proof. The case dN = 1 is clear. Now supposing that the cdse- 1 is true we
will proof it for N. If r{p} = N thenp is separable by theorefm 5.1. Otherwise
as long asfp} > N then by lemma 5]5 there exi§&sg) = |€*,g) € R{p}. Thus
there isA > 0 such that

p=p'+Alegieg, p'a=(p)"*+Ale",g)(e"g (5.37)

andp’ = (p’)"~ and {p’} = r{p} — 1. This subtraction of product projectors can
be repeated untifp’} = N.

Notice thatp s does not work!
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6 Schmidt Number Witnesses

6.1 Introduction

Let’s consider the following problem:

Given a mixed state described pyhow can the entanglement be described (es-
pecially: is the state entangled at all) ?

So far we have used witnes3afsfor this detection where

Tr(Wo) >0 Tr(Wp) <0 (6.1)

for all o € Sand for some entangled. We further found that decomposable
witnesses

W =aP+(1-a)Q'e (6.2)

cannot detect PPT entangled states.
For bipartite pure states we have

Def. 6.1 |y) € Ha® 74 withdimsZz =M < dimJZ) = N hasScHMIDT rank r
if its SCHMIDT decomposition reads

r<m

W) = ;%|ﬂ>®|fi> (6.3)

i=
with o >0andy| o? = 1.

The unique $HMIDT ran describes the number of entangled degrees of free-
dom.

The problem arises when mixed states are considered because there does not exist
a unique £HMIDT decomposition for them. Instead we define:

Def. 6.2 SCHMIDT number k of the state is defined as

where faxis the maximunScHMIDT rank within a decomposition and the mini-
mum is taken over all decompositions

For every mixed statp there exists an infinite number of developments, i.e.

p =" Rlyi)(y/l, (6.5)

16C 1. definitio for a discussion.
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Figure 5: Schematic plot of the set of states with differeaH@IDT number
embedded in the space of all states. The subscript denotes the number of entangled
degrees of freedomwit§, C S, C S;---C§ C--- C §y.

where|y"i) is a pure state of &HMIDT rankr, is not unique. In every possible
decomposition the maximumc®MIDT rankrnax of the pure stategy'i) has to
be determined. The@&IMIDT number is the minimum over allax (i.€. over all
possible decompositions).

This definition was introduced byERHAL and HORODECKI.

It is thus possible to catagorize every stathy its SCHMIDT number. We denote
the whole space qf by S, (remember: din¥Zz” = MN) and the subspace of states
with SCHMIDT number< k as§,.

S is a compact convex subset§j.

How is it possible to determine thecBMIDT number of an arbitary stapeacting
on Jta® ¢, ? The solution is based on the previous discussions regarding entan-
glement, i.e. we have to find some kind ofvIDT number withess§NW. In

a first step we generalize the concept of the edge states:

Def. 6.3 d is an k-edge state iffi|y') € R{§} withr <k, i.e. there exists no state
with SCHMIDT number smaller than k in the range &f

Lemma 6.1 Anyp, € S can be written as

pk=>2-p)p_,+ps 1>p>0 (6.6)
where$ is an k-edge staf¥/]
Lemma 6.2 The k-edge staté of egn. ) has generically lower rank thap

Lemma 6.3 The k-edge staté of eqn. [(6.5) containall information concerning
the SCHMIDT number k op, .

17A proof of this and the following lemmas can be found|in|[19| 10, 20].
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Def. 6.4 A hermitian operator W is called 8CHMIDT number witness (SNW) of
class k iff

Voe§_,:Tr(Wo)>0 (6.7)

JpeS§ :Tr(Wp) <0 (6.8)

Therefore every witness which detects entanglement is alscHm®T number
witness of class 2.

Lemma 6.4 Every SNW that detecpsdetects als®.

Proof:

0> Tr(Wp,) = (1—p)Tr(Wp,_,) +pTr(W3) (6.9)
s Trws) < Pt wp, ) <0 (6.10)
p T/

with 0 < p < 1 and definition 6.4.
Thus the knowledge of all SNW of dlledge states fully characterizes gl S,

Lemma 6.5 Given a k-edge staté, a projector P on the kernel of and e =
infw<k<1//<k]P|y/<") > 0, then the operator

W=P—-¢l (6.11)
is a SCHMIDT number witness fod, i.e.

Tr(W9)=0—-¢e<0 (6.12)
Tr (Wp_,) >0 (6.13)

wherep_, = |y<¥)(y<¥| is an arbitary state wittBcHMIDT number smaller than
Proof: Since RS} does not contain anyy<K) by definition they must be all in

the kernel. Furthermore 8} = R{P}. So no|y<K) can be in the kernel d? and
thuse > 0. Also we have

Tr(Wp_,) =Tr(Pp_,) —Tr(elp_,) >e—e>0. (6.14)
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Figure 6. Schematic description of tangent SNW

Lemma 6.6 Every kSCHMIDT witness can be written in the canonical form
W=W-—¢l (6.15)
with R{W} = K{8} with some k-edge stafeand0 < & < infw>€SK l(l//NV]l//).

Proof:

SinceW is an arbitary witness it has to have at least one negative eigenvalue. For
simplicity considel to be in its eigenbasis. Constribt=W + €1 wheree is

equal to the absolut value of the largest negative eigenvaNMié &y construction

the rank oW is reduced by (at least) one and thuf/K} # 0. SinceW is a SNW

we know that(y<K\W|y<X) > £ > 0 and thus ndy <) is in the kernel ofV.

Def. 6.5 A k-SCHMIDT witness W is tangent tq S, at p if 3 a statep € §_;
such thafTr (Wp) = 0.

Def. 6.6 An SNW W is optimal if there exists no other SNYWWhich detects more
states than W.

Looking at figuré b motivates again that optimadt84IDT witnesses are tangent

to ..

6.2 Example for a Schmidt Number Witness

Lemma 6.7 The operator W 74, — 7,
W= 1—kTm1P with (6.16)

3

P=lymivil  and  |yg) = —= 3 i) (6.17)

i

is a SCHMIDT number witness of class k.
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Proof:
The maximum 8HMIDT number is of coursen. First we show thatV detects a
state withm > SN > k:

IV =3 3 S > il )
1 r

r

This is negative for alt > k— 1 and positive otherwise. S detects e.g|y,’).
Furthermore any statey<) can be written as

k—1 k-1 _ _
Poa= D Pioi=> By ailyl) (vl (6.19)
k—1 i; 1~ i; i jzl it i

with 3;p=1,3;0;=1and 0< p, <1,0<q; <1, ie. asassum of density
matrices of rank smaller thdawhich in turn can be written as a convex sum of
pure states.

We intend to find a lower bound for Twp, , ), i.e. anupper bound for TPp, ;).

In eqgn. ) we replacg; with the maximal entangled stahprlj_l) as an up-

per estimate and perform the sum. But for this state we have already shown that

T (WIy )y o) = 0.
This witness is furthermore optimal (not shown here).
Note also that this witness is decomposable:

1

2P A
W:P+QU:(1———>1+ a

k—1

— (6.20)

Here PJA is the partial transposed projector onto the antisymmetric subspace of

CMeC™M.
As an example considers22 where we can only haye= 2 and we have

Wt (13 )1+ 2 o o )™ =2 )
—2(15- W) =1 vt —w G2y

where we used theB.L states (c.f. eqrj (2.8)) and their relation as discussed in
sectiol4.11.
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PPT States (S1,S2 and S3)

Separable States (S1)

Figure 7: In 3x 3 all PPTES have &MIDT rank 2.

6.3 The3x 3case
By lemmg 6.7 we know already a SNW of class 2 and 3:

W, =1-3P class 2 (6.22)
3
W, =1-— §P class 3 (6.23)

This motivates the following

Conjecture 6.1 In J7; ® 75 all SCHMIDT number witnesses of class 3 are de-
composable which is equivalent to all PPTES h&ezeiMIDT rank 2.

Now we can describe the witnesses more in detail:
Lemma 6.8 Any SNW of class 2 has the form

W=0Q-¢l (6.24)
whereK{Q} does not contain any product vector, ir¢Q} > 5.

Proof:

According to lemm4d 6]6V can be written this way wher® — according to
lemmd 6.5 — is a projector on the kernel of an 2-edge $tate

K{Q} = R{8} so by definition of thek-edge-statf 6|3 {Q} cannot contain any

state with £HMIDT rank 1, i.e. any product vector. As shown in footrjoté 10 on
pag€ 2F the maximum subspace created by product vectors has the dimension 5
and thus the dimension of{Q} must not be larger then 4 i.e{@} > 5.
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Lemma 6.9 Any SNW of class 3 has the form
W=Q-¢l (6.25)
wherer{Q} > 8, i.e. W has at least 8 positive and at most one negative eigenvalue.

Proof:

Again by lemma 6J8V can always be written in this form. Simmilarly{Q} =
R{&} which means by definitioh 6.3 that{Q} cannot contain any state with
SCHMIDT rank 2.

Suppos&) had a two dimensional kernel. In this case choo$ing and|y,) lin-
early independent and from the kernel we hav@y?) (y?|) < 0 with [y?) ~
ly;) + |w,) — which is a contradiction becau¥¥ should only detect states of
ScHMIDT number 3. Thus KQ} <1 or R{Q} > 8.

Theorem 6.1 In J7; ® 775 all PPTES with rank 4 have SN=2.

Proof:

8 is a PPTES with{6} = 4 and thus dimK&} = 5. Therefore by footnote 10
(see also proof of Iem.8) there is at least one product vegtdn) € K{5}.
Sinced is a PPT staté A > 0 and thuge;, f) € K{8Ta}.

If we denote an orthogonal bages) with i = 1,2, 3 in 77, we have

(e,|0]e, f) =
(8]87ale], ) =

i=23 because (6.26)
(6.27)

and thereforé |e,, f) must be orthogonal te,), i.e.

Sley, f) = ley, 0) + e, h) =1 [y?) (6.28)

which has obviously SHMIDT rank 2.
Applying lemmd 2.1 (c.f. eqn[ (2.25)) we can write

1
§=8+ANvy?(y? with A=—T"—— (6.29)
(v231v?)
and {6’} = 3.
Now
6/‘elaf>:6’e17f>_/\’w2><v/2‘e17f>:O (630)
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becausée,, f) is in the kernel o and orthogonal toy?) and

§'ley, f) = 8le,, T) — Aly?) (WPe,, )

“WA-— T VAW h =0 (63
(w2l 51v°)

le,, f)

but

8'es, f) = (8 — Al (v?) ey, f)
=|®%) =le,.§) + &5 h) (6.32)
Again using lemma 2|1 we have
8 =8"+APP(P? §">0 (6.33)
and 5"} = 2,A = ((#?[3|®?)) L.
It is shown the same way as before théte, f) = 0 fori = 1,2,3. Sinced” acts
in 3x 2 and it is orthogonal tof ) € .75, §” has at most SN 2. Now in the sum

§ = 8"+ A% (D7 + AJy?) (v?| (6.34)

every term has at most SN 2 so the sum can have at most SN 2. But since we
started with an entangled state in the first pl&gaust have SN 2.
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A Generalization of the Schmidt Decompaosition for
the Three Qubit System

A.1 Motivation

So far three approaches regarding this problem have been made:
1. The Barcelona approach [21] and alsqg [22].
2. The approach from@®BERY et al. [23].
3. The Innsbruck approach [24].

While the first two approaches are very similar, the Innsbruck approach is differ-
ent.

First we note that entanglement is directly linked to quantum non-locality. If two
states|y;) and|y,) can be transformed into each other with probability one by
use of only local operations and classical communication then both states have
the same entanglement which is equivalent to the possibility to transform one
state into the other by unitary transformations:

lvy) ~ [ws,) & (A.1)
lyy) =U; 00U, ® - @Un|y,) (A.2)

if |y;) € Ch ®---®@C%. This motivates to look at bipartite systems with
|l//1>7 |l//2> € Cdl ® Cdz and dl S d2- (A3)

If we expand both states into an orthonormal system

dl

v = 3 el (A4)
dl

W/2>:Zaj”j> (A.5)
=1

then|y,) ~ |y,) & o = B; Vi. If we have e.g. 3 BHMIDT coefficients and we
remember that states have to have the norm one, we can write

1= +o2+a5 witha >0 (A.6)

and interpret this as a point in entanglement space.
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Before continuing, we remember how local transformations act on a two qubit
state. If

v) =Y t;li)lj) e C?0C?
7

T= ( oo o1 ) and (A.8)
10 11
0
W) = (0, 1), T ( 1 ) (A.9)
B

then transformations regarding the first indéxdre multiplications of unitary
operators\y,) from left while transformations regarding the second indga(e
multiplications from right (withU,)). Thus we can write

A, O
T =U;TU, T:uj( g /12)“2 (A.10)

ly) = 1,|00) +A,|11) in the new basis. (A.11)
Now we want to generalize the decomposition to states
ly) € C?® C?® C2 (A.12)
Using the same notation as before we can write an arbitrary state as

lv) = ztijk|ijk>- (A.13)
]

To obtain the maximal physical content of that state (in contrast to mathematical
degrees of freedom) we want to obtain a basis in which the maximal number of
t. =0, i.e. we want to remove all the superfluous information due to a bad choice
of the local bases. This is equivalent to diagonalizing a tensor with three indices.
The key question is how many coefficients can be always transformed to zero.

A.2 The Barcelona Approach

Since it is difficult to explicitly write down matrices with three indices we split
the matrixT into two matrices:

T. = tOOO t001 T = thO thl (A 14)
0 t010 t011 ! tllO t111 .
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Using this notation local transformations on the second (third) subsystem are
again simply multiplications of the respective matrices from left (right). Trans-
formations on the first subsystem with

_( « B
o= % 5. (A15)
UUT =1, detU = 1 and thuga|?> + |B|?> = 1 mix the two matrices:
To=aTy+pT, (A.16)
T =B To+a'T, (A.17)

Since we still have a free parameter in the transformation we require
det(Tg) = 0= det(aT,+BT,) & def(Ty+xT;) =0 (A.18)

wherex = g an unbound variable. The determinant is a quadratic equation for
complex values and is thus always solvable. We denote the solutionxettd

Xo-
Now we choose transformations in system two and three such that

Ay O
U,ToUg =Tg = ( (;3 0 ) . (A.19)
This is possible since dgt,TjU,;) = detU,U,) - det(T;) = 0 and thus at least one
eigenvalue vanishes. With this choice of transformation the second matrix now
reads

1,67 A
U2T1U3:< i Aj) (A.20)

with 4, € R*, 0< A4 < 1 andy; A% = 1. All phases excepp are absorbed by
redefining the local bases by a phase factor, which is always possible.
Thru this smart choice of local transformationg now reads

W) = 2,|000) + 1,€9]100) + A,]|101) + A4|110) + A,|111), (A.21)

i.e. we have now 6 real parameters. In general we cannot have less than six. This
can be shown as follows:

The entire space (regarding its product natur&)dsc C2 x C2. It has the complex
dimension 22-2 =8 or accordingly 16 real parameters. There are several possible
counting mechanisms for the minimum number of parameters:
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1. In everyC? subspace we can describe the most general basis for states by

\o>=é@(\/£é¢) \1>:é9(%). (A.22)

with p € {0...1} and ¢,0 € {0,2r}. Since the overall phas® corre-
sponds to a rotation of the coordinate system in this subspace (a local ro-
tation) it bears no physical relevance and we can consider it in our choice
of t, k- Therefore we need two real parameters for every subspace and thus

six parameters for a general statelif® C? ® C2. Thus we can choose an
new basis by an appropriate rotation which transforms the remaining five
complex parameters to zero.

2. We must be capable to parameterize the most general transformation on the
states. Such transformation belong to

U(1) x SU(2) x SU(2) x SU(2). (A.23)

Each local transformation is described by a special unitary transformation (3
parameters instead of 4 becausd.let 1) and we can globally add a phase

(or collect all local phase to one global phase). So we hav@ ¥ 3= 10
parameters for the transformation and thus 6 parameters remain in the state
independently of the basis chosen.

In eqgn. [A.18) we could have have chosen the solupinstead ofx; in this
case we would have gotten

) = 2,|000) + A,€%|100) + A,|101) + A,/110) 4 4,/ 111). (A.24)
It can be shown that if we require
O<o<rm (A.25)

(or alternativelyr < @ < 2r) the parameters are uniquely defined. Therefore we
can compare the entanglement of two states by decomposing both and comparing
the 6 parameters.

It should be noted here that separable states of course have only griz Be-

sides this criteria, there is is no measure of entanglement, i.e. it is impossible to
tell if one state is "more entangled" then another one.

A.3 The Sudbery Approach

Again we describe an arbitrary state by
) = Ztijk|ijk> (A.26)
]
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and we want to obtain as many zero parameters as possible. To achieve this we
choose a new basis which obeys

max| (e, B, y|y)[* =ty (A.27)
apBy

This fixes the basis in each subsystem:

|D)a = o) fixes|0) o (A.28)
Vg :=1B) fixes|0)g (A.29)
De:=17) fixes|0) (A.30)

We again obtain the same form for the wave function:
ly) = 25|000) +4,€9(100) + A,|102) + A,|110) + A,4|111) (A.31)
I.e.t),0="1t911 = t101 = 0. If €.9.ty;; # O then|y) would contain the two terms
to11/010) + 1,1,/ 111) = (a]0) +b|1)) [12) = |/ B7). (A.32)

It can be shown that if e.gy,, € R" then

b> 1~ Gz <1 (A.33)
t]2.11+tgll
and therefore
b such that(a/By|w)|* > [(aByw)[? (A.34)

which violates the maximum requirement in eqn. (A.27).

The SUDBERY-criteria cannot determine whether the decomposition is unique or
not. Its main advantage lies in the fact that it can be easily extended to system
with more qubits.

A.4 The Innsbruck approach

If we look at pure stateg € C? ® C? we know that we can always write them as
v = 0,p|00) + oy |11) (A.35)

where the local basis does not need to be orthogonal.
For generic pure statag € C? @ C? @ C? we still need only two product states:

ly) = «|000) + B|abe) (A.36)
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Here also0|a) # 0, (0|b) # 0 and(0|c) # 0 are possible.

Proof:

From eqgns.[(A.20) andl (A.24) we know the two decompositions possible. In these
cases we see that

A<C_)‘ V) pec = ‘9>B|(_)>c (A.37)
AOlY) agc = 10)/0)c (A.38)
are product states. This means we have to show
Allly) ~ |bCgc ald [w) ~[00)gc (A.39)
with (ala ) = 0.
When we created the states we used the requirement
de(T) =0 < P +gx+r =0 (A.40)

in eqgn. [A.18) which yields two solutiong andx,. But if
@ —4pr=0 wehave Xx,=X%, (A.41)

which cause$0) = |0).
It can be shown that in this case

W) = 25|000) + 14,9100 + A,]101) + 1,|110 (A.42)

i.e. 2, = 0. Inthis case the Innsbruck decomposition is not possible.
If A, # O we rewrite eqn(A.20) as

W) = 21000 +AM[100) + 12100 + 2,|101) + 25| 110) + A,/ 111)
= |d)[00) + [2) (A{2]00) + 2,102) + A5|10) + 2,11} ) (A.43)

whereA (M) + 112 = 1,€% and|d) = 2,/0) + (V| 1).
Now the second term is only a two qublt system where we can use the polar
decomposition[(2]2) to diagonalize it:

2
(2100) +2,/02) + A5]10) + A,|11) = ZA\ lij) .ZBi|i,i> (A.44)
i=

with the diagonal matriB = UAVT.
To realize the second term in the Innsbruck decomposition of egn.](A.35) we have
to require that eithelB; =0 orB, =0, i.e.

det(B) = 0= defUAV") = detU) det(A) detVT) = det(A) (A.45)
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sinceU andV are unitary matrices. This can be rephrased as

_ oA

0=222,— LA s AP :
A

(A.46)

which we can fulfill for anyA; (as long ast, # 0 as mentioned above) as we can
always adjust witth,(!).
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