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Motivation

This lecture intends to describe the theory from the foundations [1] up to the
current research front (see e.g. reviews from [2] and recent publications from [3]
and [4]).
Its main emphasis is on mathematical describtion of the theory rather then on
possible applications, see [5] for those. Although the intention is to prove all
theorems, some previuos mathematical knowledge (as found in e.g. [6], [7], [8]
and [9]) is expected.
Quantum information theory is strongly related toentanglementtheory:

1. Quantum paradoxies (EPR, SCHRÖDINGERcat, BELL inequalities).

2. Applications in Quantum Information Processing (QIP) (teleportation, cryp-
tography (i.e. for military communications), data compression and quantum
computing).

3. Basic and fundamental aspects of quantum mechanics (quantum correla-
tions).

4. Connections to important challenges of modern mathematics (i.e. theory of
positive maps on C∗ algebras) which lead to new discoveries in mathemat-
ics.
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1 Introduction

We consider two or sometimes three (quantum) systems which we label A, B
and C. They will also be given names of persons: Alice, Bob and Charlie. Each
system has a finite HILBERT space and we arrange the systems such, that the entire
HILBERT space can be written as

H = HA⊗HB dimHA = M ≤ N = dimHB. (1.1)

We adopt the notation

{|ei〉} ∈HA |ψA〉=
M

∑
i=0

ai |ei〉 (1.2)

{| fi〉} ∈HB |ψB〉=
N

∑
j=0

b j | f j〉. (1.3)

The basis used is arbitrary but fixed. All basis changes will be explicitly noted.
Thus any state can be written as

|ψ〉= ∑
i j

ci j |ei〉⊗ | f j〉 ≡∑
i j

ci j |ej f j〉 ∈ HA⊗HB (1.4)

where we will omit the direct product sign⊗ in future equations. The dimension
of the combined space is

dimH = dimHA ·dimHB = M ·N. (1.5)

If Alice and Bob have a system with only two possible eigenstates|0〉 and |1〉
(each one is said to have a qubit) then we can explicitly write down states in the
combined HILBERT space:

|ψ−〉=
1√
2

[|0〉|1〉− |1〉|0〉] = 1√
2

(|01〉− |10〉) (1.6)

Alternatively we can also write the state vectors as vectors of a four dimensional
space:

|0〉A =
(

1
0

)
A

|1〉A =
(

0
1

)
A

(1.7)

|0〉B =
(

1
0

)
B

|1〉B =
(

0
1

)
B

(1.8)

|ψ1〉= |0〉A|0〉B =


1
0
0
0

 |ψ−〉=
1√
2


0
1
−1
0

 (1.9)
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The translation is done as follows. Write down Alice vector but reserveN com-
ponents for each of theM components of Alice. Then write Bobs vector into each
component of this created vector multiplying Bobs components with the with the
corresponding component from Alice. So in the above case for|ψ1〉 first write
down|0〉B multiplied by 1, then below|0〉B multiplied by 0.
Instead of describing each state by its wave function it is usually more convenient
to use the density matrix (usually labeledρ) instead, since this concept is more
general and allows to describe mixed state also.
Each operatorO can be written as

O = ∑
i jkl

Oi j
kl
|ei〉⊗ | f j〉〈ek|⊗ 〈 fl | (1.10)

where both Alice{|ei〉} and Bob{| f j〉} have an orthonormal basis:

〈ei |ej〉= δi j 〈 fk| fl 〉= δkl (1.11)

This way the combined basis inH = HA⊗HB is also orthogonal and normal. If
we denote each pair of indices as one indexk,k′ ∈ {1, . . . ,NM} then we can write
the operatorO as

O = ∑
k,k′

Ok
k′|ψk〉〈ψk′|. (1.12)

Def. 1.1 1. ρ is an operator onH = HA⊗HB

2. ρ is hermitian, i.e.ρ = ρ†. ⇔〈ϕ|(ρ|ψ〉) = (〈ϕ|ρ) |ψ〉. Written component
wise this meansρkk′ = ρ∗k′k.
Using the spectral theorem we can write

ρ = ∑
k,k′

ρkk′|ψk〉〈ψk′|= ∑
l

λl |ϕl 〉〈ϕl | (1.13)

whereλl are eigenvalues ofρ and|ϕl 〉 its eigenvectors.

3. ρ > 0 ⇔ ∀|ψ〉 : 〈ψ|ρ|ψ〉 ≥ 0. This is equivalent to the statement that all
eigenvaluesλl ≥ 0.

4. Tr(ρ) = ∑l λl = 1.

The last two definitions allow to interpret the density matrix in terms of probabil-
ities.

Def. 1.2 The Kernel ofρ is defined asK{ρ}= {|ψ〉 ∈H : ρ|ψ〉= 0}.1

1Note that this is a linear quantity.
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We haveρ = ρ†⇒ K{ρ} is a subspace which is spanned by the eigenvectors with
zero eigenvalue.

Def. 1.3 Range ofρ : R{ρ}= {|ψ〉 ∈H : ∃|ϕ〉 : ρ|ϕ〉= |ψ〉}.

Sinceρ = ρ† R{ρ} is a linear subspace ofH spanned by the eigenvectors ofρ

with λ > 0, i. e. if ρ|φ1〉= |ψ1〉 andρ|φ2〉= |ψ2〉 then

ρ
(
α|φ1〉+β |ψ2〉

)
= α|ψ1〉+β |ψ2〉. (1.14)

Further sinceρ = ρ† we have

R{ρ} ⊥ K{ρ}. (1.15)

Proof:
Take|ψ1〉 ∈ R{ρ} and|ψ2〉 ∈ K{ρ}. Then∃|φ〉 ρ|φ〉= |ψ1〉 and

〈ψ2|ψ1〉= 〈ψ2|ρ|φ〉= 〈ρ†
ψ2|φ〉= 〈ρψ2|φ〉= 0· |φ〉= 0. (1.16)

We call r{ρ} := dimR{ρ} the rank ofρ. Similar we have k{ρ} := dimK{ρ}.
Since eqn. (1.15) we have r(ρ)+k(ρ) = dimH . We can also proof this by explicit
construction:
If we call the eigenvectors ofρ |φl 〉 with l = 1, . . . , r(ρ) with eigenvaluesλl > 0
we can writeρ as

ρ =
r(ρ)

∑
l=1

λl |φl 〉〈φl | and |ψ〉=
r(ρ)

∑
l=1

al |φl 〉. (1.17)

where|ψ〉 is an arbitrary state in R{ρ} where at least oneal 6= 0. Now we can
explicitly construct the state|χ〉 which will be projected on|ψ〉:

|χ〉=
r(ρ)

∑
l=1

al

λl
|φl 〉 ⇒ ρ|χ〉= |ψ〉 (1.18)

Without proof we make the general remark that ifA 6= A† we have R{A} ⊥K{A†}
and R{A†} ⊥ K{A}. We will not need this property.
For this lecture we adapt the notation

O =
dimH

∑
k,k′

Okk′ |k〉〈k
′| (1.19)

OT =
dimH

∑
k,k′

Okk′ |k
′〉〈k| and thus (1.20)(

OT)
kk′ = Ok′k. (1.21)
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Def. 1.4 Partial transpose:
We again have aρ which acts onHA⊗HB. If we write

ρ = ∑
i jkl

ρ
i j

kl
|i〉A⊗| j〉B〈k|A⊗〈l |B then (1.22)

ρ
TA = ∑

i jkl

ρ
i j

kl
|k〉A⊗| j〉B〈i|A⊗〈l |B and (1.23)

(
ρ

TA
)i j

kl = ρ
k j

il
. (1.24)

is the partial transpose2 with respect to Alice.

As an example we chooseHA = C
2 andHB = C

N thenρ is a 2N×2N matrix
which can be written as

ρ =
(
|0〉A〈0|

)
A+

(
|0〉A〈1|

)
B+

(
|1〉A〈0|

)
B† +

(
|1〉A〈1|

)
C (1.25)

where theN×N matricesA = A†, B andC = C† act in Bobs space. Now if we
explicitly write downρ we have

ρ =
(

A B
B† C

)
= ρ

†
ρ

T =
(

AT B∗

BT CT

)
(1.26)

ρ
TA =

(
A B†

B C

)
ρ

TB =
(

AT BT

B∗ CT

)
(1.27)(

ρ
TA
)TB = ρ

T. (1.28)

Partial transposition is a physically strange operation. Transposition can be un-
derstood as time inversion, so partial transposition means that e.g. Alice inverses
time while Bob does not.
If both Alice and Bob make a local unitary transformation then this transformation
remains unitary even if one of them makes a partial transpose:

U = UA⊗UB (1.29)

ρ
new = UA⊗UBρU†

A⊗U†
B (1.30)

(ρnew)TA = U∗
A⊗UBρ

TAUT
A ⊗U†

B (1.31)

FurthermoreρTA ≥ 0 iff (ρnew)TA ≥ 0. Also the trace of a partial transposed state
remains invariant under local changes of basis.

2Notice again that the basis remains fixed albeit arbitrary.
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As an example consider aC3⊗CN system:

ρ =

 A00 A01 A02
A†

01 A11 A12
A†

02 A†
12 A22

 ρ
TB =

 AT
00 AT

01 AT
02

A∗01 AT
11 AT

12
A∗02 A∗12 AT

22

 (1.32)

where eachAi j is anN×N matrix andAii = A†
ii .
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2 Entanglement and Separability

2.1 Entanglement of Pure States

Def. 2.1 Entanglement of Pure States
A pure state, i.e. a projector|ψ〉〈ψ| on a vectorψ ∈Ha⊗Hb , is entangled iff it
is not separable, i.e.|ψ〉 cannot be written as a product vector|ψ〉= |e, f 〉.

Theorem 2.1 SCHMIDT decomposition
Every|ψ〉 ∈HA⊗HB can be represented in an appropriately chosen basis as

|ψ〉=
M

∑
i=1

ai |ei , fi〉 (2.1)

where the|ei〉 (| fi〉) form a part of an orthonormal basis inHA (HB) and ai ≥ 0,
∑M

i=1a2
i = 1.

In order to proof this theorem we need the following

Theorem 2.2 Polar (or Singular Value) Decomposition
Every M×N matrix A can be represented as

A = UAdV†. (2.2)

where U and V are unitary matrices and Ad is a diagonal, real positive matrix.

Proof:
B = AA† is a positive, hermitianM×M matrix. If B is not singular we can invert
it to construct

U =
1√
B

A. (2.3)

U is an unitary matrix because

UU† =
1√
B

AA† 1√
B

=
1√
B

B
1√
B

= 1. (2.4)

We can do the same ifB is singular but in this case we only operate on the range.
SinceB is normal (BB† = AA†AA† = B†B) there exists (by the spectral theorem)
a basis whereB has only entries in the diagonal:B = VBdV† with unitaryV and
therefore also

√
B = V

√
BdV†. (2.5)
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UsingA =
√

BU we haveV
√

BdV†U = A which leads to the desired result when
we renameV →U , V†U →V† and

√
Bd → Ad.

Using this we are now able to give a proof for the SCHMIDT decomposition:
Every|ψ〉 ∈HA⊗HB can be written as

|ψ〉=
M,M

∑
i, j=1

Ai j |i, j〉

=
M,M

∑
k,l=1

M,M

∑
i, j=1

UikakδklV
∗
jl |i〉| j〉. (2.6)

where we used the polar decomposition ofA in the the second line. Since∑i Uik|i〉=
|ek〉 and∑ j V

∗
jk| j〉= |ek〉 we get

|ψ〉=
M

∑
k=1

ak|ek, fk〉. (2.7)

|ek〉 and| fk〉 form an orthonormal basis inHA, HB, respectively, becauseU and
V are unitary.
To give an example we takeHA⊗HB ⊂ C

2⊗C2. In this case the SCHMIDT

decomposition can contain up to two terms, i.e. up to two SCHMIDT coefficients
a1, a2. It is obvious that|ψ〉 is a product vector iffa1 = 0 anda2 = 1 or vice versa.
A state with SCHMIDT coefficientsa1 = a2 = 1√

2
is a maximally entangled state.

Denoting{|ek〉}= {| fk〉}= {|0〉, |1〉} the possible maximally entangled states can
be written as the so called BELL states

|ψ±〉=
1√
2
(|01〉± |10〉) (2.8)

|φ±〉=
1√
2
(|00〉± |11〉). (2.9)

Observe that the signs in|ψ−〉 and|φ−〉 can be absorbed in the definition of|10〉
and|11〉 to achieveai ≥ 0 as in the definition.

Def. 2.2 SCHMIDT rank
TheSCHMIDT rank is the number of non-vanishing ai in theSCHMIDT decompo-
sition.

A state is a pure state iff its SCHMIDT rank is one. Notice that the SCHMIDT

rank is unique since there cannot be two SCHMIDT decompositions with different
numbers of non-vanishing coefficients3.

3 Suppose there are two decompositions for|ψ〉,

|ψ〉=
s

∑
i=1

ai |ei fi〉 and |ψ〉=
s̃

∑
i=1

ãi |ẽi f̃i〉, (2.10)
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Def. 2.3 Entanglement for pure states

E(|ψ〉〈ψ|) =−Tr(ρB lnρB) (2.11)

is a suitable measure for the entanglement of pure states.

Remember thatρB = TrA(ρ) acts inHB only. We can expandρB (or ρA) in the
SCHMIDT basis

ρB = TrA(|ψ〉〈ψ|)

= TrA

(
∑
k

ak|ek〉| fk〉 ∑
l

al 〈el |〈 fl |

)

=
M

∑
k=1

a2
k | fk〉〈 fk| (2.12)

ρA =
M

∑
k=1

a2
k |ek〉〈ek| (2.13)

to expressE(|ψ〉〈ψ|) in terms of theak:

E(|ψ〉〈ψ|) =−
M

∑
k=1

a2
k ln a2

k ≥ 0 (2.14)

Especially

E(|ψ〉〈ψ|) = 0 iff ak = 0 ∀ k except oneak0
= 1 (2.15)

and we observe thatE(|ψ〉〈ψ|) is maximal iff all |ek〉〈ek| (or | fk〉〈 fk|) come with
the same weight:

E(|ψ〉〈ψ|) = max = lnM iff ak =
1√
M
∀ k. (2.16)

So E(|ψ〉〈ψ|) is zero for product states and maximal for maximally entangled
states.

with s̃> s. Because{|ei〉A}, {| fi〉B}, {|ẽi〉A} and{| f̃i〉B} each form sets of orthonormal vectors
there is|x〉A such that|x〉A ∈ Span{|ẽi〉A} but |x〉 6∈ Span{|ei〉A} and thus we get a contradiction
becauseA〈x|ψ〉= 0 from the first decomposition andA〈x|ψ〉 6= 0 from the second.
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2.2 Entanglement and Separability of Mixed States

Def. 2.4 Entanglement of Mixed States
A mixed stateρ is entangled iff it is not separable. It is called separable iff it can
be represented as

ρ =
K

∑
i=1

pi |ei , fi〉〈ei , fi | (2.17)

where K∈N+ is arbitrary, |ei〉 ∈HA, | fi〉 ∈HB are arbitrary but normalized and
pi ≥ 0 with ∑K

i=1 p2
i = 1.

We call the stateρ given above separable because it can be created by Alice pro-
ducing the state|ei〉 with probability pi and Bob correspondingly creating| fi〉
with probability pi . So entangled states are those states that cannot be created
using only local operations and classical communication.

2.3 Entanglement Criteria

Theorem 2.3 PERES

If ρ is separable thenρTA ≥ 0 andρTB =
(
ρTA
)T ≥ 0.

Proof:
As ρ is separable it can be written as

ρ =
K

∑
i=1

pi |ei〉| fi〉〈ei |〈 fi |=
K

∑
i=1

pi |ei〉〈ei |⊗ | fi〉〈 fi | ≥ 0 (2.18)

and we have

ρ
TA =

K

∑
i=1

pi

(
|ei〉〈ei |

)TA⊗| fi〉〈 fi |

=
K

∑
i=1

pi |e
∗
i 〉〈e∗i |⊗ | fi〉〈 fi |

=
K

∑
i=1

pi |e
∗
i , fi〉〈e

∗
i , fi | ≥ 0. (2.19)

Note that the second line is valid becauseA† = (A∗)T.
For arbitrary dimensions this theorem is only valid in the given direction. The
only if direction is only valid in special cases:
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Theorem 2.4 HORODEKCI

In C2⊗C2 or C2⊗C3 ρ is separable iffρTA ≥ 0.

The method used here to proof that theorem is the method ofsubtracting vectors
[10]. We will give the proof in 7 steps.

Lemma 2.1 A stateρ can always be represented as

ρ = ρ
′+Λ|ψ〉〈ψ| where ρ

′ ≥ 0 , |ψ〉 ∈ R(ρ) , Λ≤ 1

〈ψ| 1
ρ
|ψ〉

. (2.20)

Proof:
Taking arbitrary|φ〉 we have

|〈φ |ψ〉|2 =
∣∣∣∣〈φ |√ρ

1
√

ρ
|ψ〉
∣∣∣∣2

≤ 〈φ |ρ|φ〉〈ψ|1
ρ
|ψ〉 (2.21)

whereρ−1 is defined overR(ρ) only and where we used the SCHWARTZ inequal-
ity in the second step. Then we get

0≤ 〈φ |ρ|φ〉〈ψ|1
ρ
|ψ〉− |〈φ |ψ〉|2 (2.22)

0≤ 〈φ |ρ|φ〉− |〈φ |ψ〉|2

〈ψ| 1
ρ
|ψ〉

(2.23)

0≤ 〈φ |ρ− |ψ〉〈ψ|
〈ψ| 1

ρ
|ψ〉︸ ︷︷ ︸

ρ ′

|φ〉 (2.24)

(the last step is due to|〈φ |ψ〉|2 = 〈φ |ψ〉〈ψ|φ〉). So we haveρ = ρ ′+ Λ|ψ〉〈ψ|
with ρ ′ ≥ 0 for all Λ≤ 1

〈ψ| 1
ρ
|ψ〉 .

If we choose the maximalΛ, ρ ′ no longer containsψ in its range and the rank of
ρ is diminished by 1:

r{ρ
′}= r{ρ}−1 iff Λ =

1

〈ψ| 1
ρ
|ψ〉

(2.25)

Proof:
........

13



Lemma 2.2 If ρ has positive partial transposition (ρ is a PPT state) and if there
exists a product vector in the range ofρ, |e, f 〉 ∈R{ρ}, such that|e∗, f 〉 ∈R{ρTA}
thenρ can be written as

ρ = ρ
′+Λ|e, f 〉〈e, f | with ρ

′ ≥ 0 ,
(
ρ
′)TA ≥ 0 (2.26)

where

Λ≤min

 1

〈e, f | 1
ρ
|e, f 〉

,
1

〈e∗, f | 1
ρ

TA
|e∗, f 〉

 . (2.27)

The proof is clear using lemma 2.1.

Lemma 2.3 If ρ is a PPT state inC2⊗CN andρ|e, f 〉= 0 thenρ can be written
as

ρ = ρ
′+Λ|ê, f 〉〈ê, f | with Λ =

1

〈ê,h| 1
ρ
|ê,h〉

(2.28)

where

ρ
′ ≥ 0,

(
ρ
′)TA ≥ 0, 〈e|ê〉= 0 (2.29)

and

r{ρ
′}= r{ρ}−1, r{

(
ρ
′)TA}= r{ρ

TA}−1. (2.30)

This means knowing a product vector in the kernel ofρ makes it possible to
diminish the rank ofρ andρTA simultaneously.
Proof:
We partially transpose〈e, f |ρ|e, f 〉= 0 to get〈e∗, f |ρTA|e∗, f 〉= 0. SinceρTA ≥ 0
this impliesρTA|e∗, f 〉= 0.4

Because|e〉 lives inC2 we always have a unique orthogonal|ê〉: 〈e|ê〉= 0.
Partially transposing〈ê∗|ρTA|e∗, f 〉= 0 and〈ê|ρ|e, f 〉= 0 we get

〈e|ρ|ê, f 〉= 0 and 〈e∗|ρTA|ê∗, f 〉= 0 (2.31)

and since inC2 |ê〉 is unique there exist some|h〉, |h̃〉 such that

ρ|ê, f 〉= |ê,h〉 and ρ
TA|ê∗, f 〉= |ê∗, h̃〉. (2.32)

4Takeρ = |ψ−〉〈ψ−| and|e, f 〉= |ψ+〉 to see that this is not always true forρTA 6≥ 0.
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Furthermore

|h〉= 〈ê|ρ|ê, f 〉= 〈ê∗|ρTA|ê∗, f 〉= |h̃〉. (2.33)

(In the second step we made the partially transposition with respect to Alice which
of course does not change|h〉 ∈HB).
Now we found|ê,h〉 ∈ R{ρ} and|ê∗,h〉 ∈ R{ρTA} and we can use these vectors
to rewriteρ according to lemma 2.2. But since

Λρ =
1

〈ê,h| 1
ρ
|ê,h〉︸ ︷︷ ︸
|ê, f 〉

=
1

〈ê,h|ê, f 〉
=

1
〈h| f 〉

=
1

〈ê∗,h| 1
ρ

TA
|ê∗,h〉

= Λ
ρ

TA
(2.34)

(using eqs. (2.32)) one can chooseΛ in lemma 2.2 maximal for both,ρ andρTA,
and diminish the rank ofρ, ρTA simultaneously.
Under which circumstances can we expect to find a vector in the range ofρ ?
The following lemma shows that this is always possible if R{ρ} is (at least) a
two-dimensional subspace ofC2⊗C2.

Lemma 2.4 Every 2-dimensional subspace ofC2⊗C2 contains a product vector.

Given |χ1〉, |χ2〉 ∈ C2⊗C2 the question is whether the space spanned by these
two vectors does contain a product vector or not. This is not obvious if|χ1,2〉 are
not product vectors.
Proof:
We are searching for a product vector|e, f 〉 (|e〉 ∈C2, | f 〉 ∈C2) in the given two
dimensional subspace.
Of course we can always find|ψ1〉, |ψ2〉 spanning the two dimensional subspace
orthogonal to the subspace that should contain|e, f 〉: 〈ψ1|e, f 〉 = 0 = 〈ψ2|e, f 〉
Using a basis{|0〉, |1〉} for Alice we can write

|e, f 〉= (|0〉+α|1〉) | f 〉 (2.35)

Note that the proof below does not depend on the normalization. Using Schmidt
decomposition we can write (i ∈ {1,2}):

|ψi〉= |0〉|φ0
i 〉+ |1〉|φ1

i 〉 (2.36)

where|φ0,1
i
〉 ∈C2 are fixed by the chosen basis and|ψi〉.

〈ψi |e, f 〉 =
(
〈φ0

i |+α〈φ1
i |
)
| f 〉 = 0 leads to the following matrix equation forα

and| f 〉= ( f1, f2)
T:

M(α) ∈C2⊗C2︷ ︸︸ ︷[(
〈φ0

1 |
〈φ0

2 |

)
+α

(
〈φ1

1 |
〈φ1

2 |

)] (
f1
f2

)
=
(

0
0

)
. (2.37)
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This equation has a nontrivial solution{α, | f 〉} (i.e. we have found a product
vector) iff we can findα fulfilling detM(α) = 0 which of course is always possible
since this is a quadratic equation inα ∈C.
Note that this proof can easily be extended toC2⊗CN.

Lemma 2.5 If ρ is a PPT state, i.e.ρTA ≥ 0, acting inC2⊗C2 and r{ρ} = 2
thenρ is separable.

Proof:
r{ρ} = 2 and by lemma 2.4 there exists a product state|e, f 〉 in the kernel ofρ:
ρ|e, f 〉= 0.
We use this product state with lemma 2.3 to writeρ asρ = ρ ′+Λ|ê,h〉〈ê,h|. Since
r{ρ ′} = r{ρ}−1 = 1, ρ ′ has to be proportional to a projector. Since(ρ ′)TA ≥ 0
this projector has to be a projector on a product state5 which means that we can
write ρ asρ = |m,n〉〈m,n|+Λ|ê,h〉〈ê,h| andρ is separable.

Lemma 2.6 If in C2⊗C2 r{ρ}= r{ρTA}= 3 andρ is a PPT state and

∃ |e, f 〉 ∈ R{ρ} such that |e∗, f 〉 ∈ R{ρ
TA} (2.40)

thenρ is separable.

Proof:
We can use lemma 2.2 to reduce the rank ofρ or ρTA by 1 (taking the maximal
Λ), thereby keeping the positivity of both of them:

ρ = ρ
′+Λ|e, f 〉〈e, f | (2.41)

r{ρ
′}= r{ρ}−1 or r{

(
ρ
′)TA}= r{ρ

TA}−1 (2.42)

Now by lemma 2.5 we can show thatρ ′ or (ρ ′)TA are product states. Butρ ′ is a
product state iff(ρ ′)TA is a product state.

Lemma 2.7 If ρ ≥ 0 acting inC2⊗C2 hasρTA ≥ 0 and r{ρ} = 3, r{ρTA} = 3
then∃|e, f 〉 ∈ R{ρ} such that|e∗, f 〉 ∈ R{ρTA}.

5 To see why this holds writeρ ′ = |ψ〉〈ψ| in the basis of the SCHMIDT decomposition of|ψ〉
as|ψ〉= α|11〉+β |22〉. Then(

ρ
′)TA = |α|2|11〉〈11|+αβ

∗|21〉〈12|+βα
∗|12〉〈21|+ |β |2|22〉〈22| (2.38)

and we have that(ρ ′)TA ≥ 0 only if α = 0 or β = 0 since otherwise

[−α〈12|+β 〈21|]
(
ρ
′)TA [−α

∗|12〉+β
∗|21〉] =−2|αβ |2 < 0. (2.39)

On the other hand if (e.g.)β = 0 then(ρ ′)TA = |β |2|11〉〈11| ≥ 0.
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This means that there exists a smallε such that

ρ− ε|e, f 〉〈e, f | ≥ 0 (2.43)

ρ
TA− ε|e∗, f 〉〈e∗, f | ≥ 0. (2.44)

Therefore we can choose an appropriateε so we can reduce the rank of the den-
sity matrices or its partial transpose by one. Having this we are finished (see
lemma 2.6).
The proof presented here is not the most simple one but it has the advantage of
being extensible to the 2×3 case. See [11] for a simpler proof and [12] for the
published version.
Proof:
We use the following notation for this proof:

ρ =
(

A B
B† C

)
(2.45)

with A = A† andC = C†.
A andC are invertible. If one of them is not invertible, e.g.C is not invertible and
thus has rank 1 then there exists a vector| f 〉 such thatC| f 〉= 0. Thus

(0,〈 f |)
(

A B
B† C

)(
0
| f 〉

)
︸ ︷︷ ︸

|ψ f 〉

= (0,〈 f |)
(

B| f 〉
0

)
= 0 (2.46)

thus〈ψ f |ρ|ψ f 〉 = 0 and sinceρ ≥ 0 alsoρ|ψ f 〉 = 0. This means,|ψ f 〉 is in the
kernel and thereforeB| f 〉 must be zero also. This means

|ψ f 〉= |1〉⊗ | f 〉= |1, f 〉 ∈ K{ρ} (2.47)

which is a product vector in the kernel and we can apply lemma 2.3, reduce r{ρ}
and r{ρTA} by one and the proof is completed by lemma 2.5.
We separate the proof into several steps:

1. We can choose the basis in Alice at will:

|0〉A =
1√

1+ |α|2

(
1
α

)
|1〉A =

1√
1+ |α|2

(
−α∗

1

)
(2.48)

Using this choice of basis we have

Bnew = A〈0|ρ|1〉A =
1

1+ |α|2
(1,α∗)ρ

(
−α∗

1

)
=

1
1+ |α|2

B̃(α∗).

(2.49)
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Using this transformation we have a quadratic equation inα∗ in each com-
ponent ofB̃. We chooseα∗ such that det̃B = 0. This is possible sincẽB is
quadratic inα∗ and therefore det̃B contains a fourth oder polynomial inα∗

which has roots inC.

Using this choiceB̃ has rank 1.

2. Next we change the basis in Bobs space:

ρ → 1A⊗
1√
C

ρ1A⊗
1√
C

(2.50)

This is not a unitary operation but since it is local and keeps hermicity the
separability properties are not changed.

The resulting density matrix is now

ρ =
(

A B
B†

1

)
(2.51)

Here we introducednewmatrixesA andB in Bobs space which resulted
from the previous basis transformations.

3. r(ρ) = 3 means that there exists a vector which fulfills

ρ

(
| f 〉
| f̃ 〉

)
= 0 (2.52)

where| f 〉, | f̃ 〉 in C2. Using the explicit form ofρ given in eqn. (2.51) we
get the constraint

| f̃ 〉=−B†| f 〉 or (2.53)(
| f 〉

−B†| f 〉

)
∈ K{ρ} i.e. (2.54)

ρ

(
| f 〉

−B†| f 〉

)
=
(

(A−BB†)| f 〉
0

)
=
(

0
0

)
. (2.55)

This means that| f 〉 is a vector in the kernel ofA−BB†. SinceA−BB† acts
in a two dimensional space the rank ofA−BB† is at most one and thus

A−BB† = λP with (2.56)

P = |ψ〉〈ψ| | f 〉= |ψ⊥〉 and (2.57)

〈ψ⊥|ψ〉= 0. (2.58)
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The projectorP is unique up to a phase.

We can apply the same arguments toρTA. The only difference is thatB is
exchanged withB†. The result is

A = BB† +λP P= |ψ〉〈ψ| (2.59)

A = B†B+ λ̃ P̃ P̃ = |ψ̃〉〈ψ̃|. (2.60)

If we compute the difference between those equations we have

BB†−B†B = λ̃ P̃−λP = λ (P̃−P). (2.61)

The last equality can be seen if the trace is taken on both sides. The trace of

a commutator is zero, the trace of a projector is one. So 0= Tr
(

λ − λ̃

)
or

λ = λ̃ .

4. We choose the basis in Bobs space where

BB†−B†B =
(

Λ 0
0 −Λ

)
= λ (P̃−P). (2.62)

This choice is possible sinceBB†−B†B is hermitian and Tr
(
BB†−B†B

)
=

0. ThenewoperatorsP andP̃ remain projectors since hermicity and rank
are not changed by unitary base transformations.

We now consider the most general states (but disregarding an overall phase
as it is irrelevant since we are only interested in projectors):

|ψ〉=
( √

p√
1− peiϕ

)
|ψ̃〉=

( √
1− p̃√
p̃eiϕ̃

)
(2.63)

Using these vectors, we can evaluate eqn. (2.62) component wise:

Λ = λ ((1− p̃)− p) (2.64)

−Λ = λ (p̃− (1− p)) (2.65)

0 = λ

(√
1− p̃

√
p̃e−iϕ̃ −√p

√
1− pe−iϕ

)
(2.66)

0 = λ

(√
1− p̃

√
p̃eiϕ̃ −√p

√
1− peiϕ

)
(2.67)

This system is solvable ifϕ = ϕ̃ andp = p̃ or p = 1− p̃. In the latter case
|ψ〉= |ψ̃〉 causingB = B† and thusρ = ρTA which is not the most general
case. Therefore we choosep = p̃ andΛ > 0 we have6

Λ = λ (1−2p) ⇒ p <
1
2
. (2.68)

6Λ = 0 again meansB = B† which is not the most general case.
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Now we have

ρ =
(

BB† +λP B
B†

1

)
ρ

TA =
(

B†B+λ P̃ B†

B 1

)
. (2.69)

5. ∀B with r(B) = 1 ∃ always a unitaryK such

KBK† = BT. (2.70)

Proof:
SinceB has rank one it can be written as

B = η | f 〉〈g| and (2.71)

BT = η |g∗〉〈 f ∗|. (2.72)

This means that

K| f 〉= |g∗〉 ⇒ 〈g|K† = 〈 f ∗|. (2.73)

Such a transformation exists because ifK is unitary, i.e.K†K = 1 then

〈g| f 〉= 〈 f ∗|g∗〉= 〈 f ∗|K| f 〉= 〈g|K̃K| f 〉 (2.74)

whereK̃ is an yet unkown linear operator. Comparing both sides we see
thatK̃ = K−1 = K†.

Notice that in the following part of the proof it is not sufficient to only claim
that for anyB ∃ always a unitaryK such that

KBK∗ = BT. (2.75)

For later use we note that (starting with eqn. (2.70))

B = K∗BTKT = K∗KBK†KT (2.76)

⇔ K†KTB = BK†KT. (2.77)

If we defineU = K†KT we can write this asUB = BU.

6. K can be explicitly written as

K = eiϕ0

(
0 1
1 0

)
. (2.78)
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Proof:
If we define the real matrix (see eqn. (2.62))M = BB†−B†B = λ (P− P̃)
then we can write usingK†K = 1

KMK† = KBB†K†−KB†BK† = KBK†KB†K†−KB†K†KBK†

= BTB∗−B∗BT =−(B∗(B†)∗− (B†)∗B∗) =−M∗

=−M = λ (P̃−P) =
(
−Λ 0
0 Λ

)
. (2.79)

Writing down both sides explicitly we have

−λ

(
K|ψ̃〉〈ψ̃|K†−K|ψ〉〈ψ|K†

)
=
(
−Λ 0
0 Λ

)
= λ (|ψ̃〉〈ψ̃|− |ψ〉〈ψ|) . (2.80)

Now we assume again the most general parameterization possible:

K|ψ〉= eiϕ1

( √
1−q√
qeiΘ

)
K|ψ̃〉= eiϕ2

( √
q√

1−qeiΘ

)
(2.81)

with q∈R andϕ1,ϕ2,Θ ∈ [0. . .2π[. Using eqn. (2.80) we can now expli-
citly compare the parameters and see thatq≡ p has to be fulfilled (sameΛ).
To discoverK we make the most general ansatz:

K|ψ〉=
(

a b
c d

)( √
p√

1− peiϕ

)
=
(

a
√

p+b
√

1− peiϕ

c
√

p+d
√

1− peiϕ

)
!= eiϕ1

( √
1− p√
peiΘ

)
(2.82)

Herea,b,c,d ∈C. Immediately we see thata = d = 0 and

b = ei(ϕ1−ϕ) c = ei(ϕ1+Θ). (2.83)

Calculating the conditions usingK|ψ̃〉 results in the same requirements but
with ϕ1 replaced byϕ2, thus we see thatϕ1 = ϕ2 ≡ ϕ̂ has to hold.

The matrix U defined above is now diagonal. We know that

UB =
(

c∗b 0
0 b∗c

)(
b1 b2
b3 b4

)
=
(

c∗bb1 c∗bb2
b∗cb3 b∗cb4

)
=
(

c∗bb1 b∗cb2
c∗bb3 b∗cb4

)
= BU. (2.84)
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We see7 that eitherb = c or b2 = b3≡ 0. The latter case means that B is di-
agonal and thusBB†−B†B = 0. As has been shown already this conditions
is not fulfilled for an arbitrary case.

Therefore we now requireb = c and getΘ =−ϕ̂. Thus we can write

K =
(

0 exp(i(ϕ̂−ϕ))
exp(i(ϕ̂−ϕ)) 0

)
= eiϕ0σx (2.85)

and furthermore we see that

K|ψ〉= eiϕ̂
( √

1− p√
pe−iϕ

)
= eiϕ̂ |ψ̃∗〉 (2.86)

K|ψ̃〉= eiϕ̂ |ψ∗〉. (2.87)

Since a phase forK is irrelevant we choose for simplicityϕ0 = ϕ̂−ϕ ≡ 0.

7. Remembering8 (2.54) and (2.57) we know that(
|ψ⊥〉

−B†|ψ⊥〉

)
∈ K{ρ}

(
|ψ̃⊥〉

−B|ψ̃⊥〉

)
∈ K{ρ

TA}. (2.88)

If we denote|e, f 〉 as the desired product vector and try|e〉 as|e〉=
(

1
z

)
with z∈C we have

|e〉⊗ | f 〉=
(
| f 〉
z| f 〉

)
∈ R{ρ} |e∗〉⊗ | f 〉=

(
| f 〉

z∗| f 〉

)
∈ R{ρ

TA}.

(2.89)

The scalar product between a vector from the range and a vector from the
kernel has to vanish:

〈ψ⊥|(1−zB†)| f 〉= 0 (2.90)

〈ψ̃⊥|(1−z∗B)| f 〉= 0 (2.91)

Since the subspace is two dimensional we know the states orthogonal to
|ψ⊥〉. Since we havez still available we can require

(1−zB†)| f 〉= |ψ〉 (1−z∗B)| f 〉 ∼ |ψ̃〉 (2.92)

7Strictly speaking we see only arg(b) = arg(c) but sinceK is unitaryb andc have to be phases.
8All vectors are in the base corresponding to Bobs (and Alice) last choice of bases.
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which means

| f 〉=
1

1−zB† |ψ〉= η
1

1−z∗B
|ψ̃〉 (2.93)

with an still unknownη ∈C.

From eqn. (2.86) we know

σx|ψ̃〉= eiϕ |ψ∗〉 (2.94)

so usingσ2
i = 1 and eqn. (2.75) we can rewrite eqn. (2.93):

1
1−zB† |ψ〉= ησxσx

1
1−z∗B

σxe
iϕ |ψ∗〉

= ηeiϕ
σx

1
1−z∗BT |ψ

∗〉

= ηeiϕ
σx

(
1

1−zB† |ψ〉
)∗

(2.95)

So if we write

1
1−zB† |ψ〉=

(
v1
v2

)
(2.96)

then we have the following requirement:(
v1
v2

)
= ηeiϕ

σx

(
v∗1
v∗2

)
= ηeiϕ

(
v∗2
v∗1

)
(2.97)

Since

v1

v2
=

v∗2
v∗1

⇒ v1 = veiϑ

v2 = vei(ϑ+δ ) (2.98)

we can now solve both equations forη and check for consistency:

eiϑ = ηei(ϕ−ϑ−δ ) ⇒ η = ei(δ−ϕ+2ϑ) (2.99)

ei(ϑ+δ ) = ηei(ϕ−ϑ) ⇒ η = ei(δ−ϕ+2ϑ) (2.100)

Obviouslyδ can be chosen arbitrarily. Choosing an appropriate value we
can write

1
1−zB† |ψ〉 ∼

(
1

eiδ̃

)
. (2.101)
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We have thus far only computed the relative angleη but have not actually
fixedz itself. So we can now choosez such(

eiδ̃ ,−1
) 1

1−zB† |ψ〉= 0. (2.102)

SinceB† has rank 1 (cf. step 1)(B†)2 = αB† with α ∈C. This means

1
1−zB† = 1+ f (z)B† (2.103)

⇔ f (z) =
z

1−αz
(2.104)

and thus we have to solve for everyδ(
eiδ̃ ,−1

)(
1+

z
1−αz

B†
)
|ψ〉= 0 (2.105)

⇔ (1−αz)
(

eiδ̃ ,−1
)
|ψ〉︸ ︷︷ ︸

c1

+(z−αz2)
(

eiδ̃ ,−1
)

B†|ψ〉︸ ︷︷ ︸
c2

= 0 (2.106)

⇔ c1 +z(c2−αc1)−z2(αc2) = 0. (2.107)

This equation has a solution foranyδ and thus there exists always a product
vector in the range ofρ.

Now we are done. The following table lists all possible cases and the lemmas used
to reduce the rank or to show separability respectively:

r{ρ} r{ρTA} lemma(s)

4 4 Use lemma 2.1 to reduce either r{ρ} or r{ρTA}
4 3 Use lemma 2.1 to reduce either r{ρ} or r{ρTA}
3 4 Use lemma 2.1 to reduce either r{ρ} or r{ρTA}
3 3 Because of lemma 2.7 and lemma 2.6ρ is separable
2 x Because of lemma 2.5ρ is separable
x 2 Because of lemma 2.5ρ is separable

This proof can be extended to the 2×3 case as well.
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3 PPT Entangled States

3.1 Definition

Def. 3.1 PPT entangled state
A stateρ is called a PPT (partial positive transposed) entangled state (sometimes
abbreviated as PPTES) iff

1. it is entangled and

2. ρTA ≥ 0 (; ρTB ≥ 0).

Remarks:

• In C2⊗C2 andC2⊗C3 a state is a PPT state iff it is separable.

• In systems with more than two particles also more complicated situations
are possible, e.g.ρTA ≥ 0 butρTB < 0, ρTC > 0.

• PPT entangled states are also called boundor hidden entangled states be-
cause this type of entanglement is not distillable. See [13] for details.

3.2 A Criterion of Separability

Theorem 3.1 P. HORODECKI

If ρ is separable then

∃ |e, f 〉 ∈ R{ρ} such that |e∗, f 〉 ∈ R{ρ
Ta}. (3.1)

Proof:
Writing ρ as

ρ =
K

∑
k=1

λk|ek, fk〉〈ek, fk|. (3.2)

we see that|ek, fk〉 has to be in the range ofρ9 and because

ρ
TA =

K

∑
k=1

λk|e
∗
k, fk〉〈e

∗
k, fk|. (3.3)

|e∗k, fk〉 is in the range ofρTA.
Remark: We can also extract a stronger formulation for the theorem out of this

9This holds because∀|ψ〉 ∈ K{ρ}: 0 = 〈ψ|ρ|ψ〉= ∑λk|〈ψ|ek, fk〉|
2 ⇔ |ψ〉 ⊥ ∀|ek, fk〉.
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proof:
If ρ is separable then

∃
{
|ek, fk〉

}
k=1,...,K : R{ρ}=

[{
|ek, fk〉

}
k=1,...,K

]
(3.4)

and : R{ρ
TA}=

[{
|e∗k, fk〉

}
k=1,...,K

]
. (3.5)

This means that the set of|ek, fk〉, |e
∗
k, fk〉 span R{ρ} and R{ρTA} respectively.

3.2.1 Example



b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 0 0 0 b
0 0 0 b 0 0 0 0

0 0 0 0 1+b
2 0 0

√
1−b2

2
b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0

0 0 b 0
√

1−b2

2 0 0 1+b
2


1≥ b > 0 (3.6)

For this state to be a PPT stateρ has to be positively defined. We can verify this by
showing that the various submatrices are positively defined. We find three types
of submatrices: (

b b
b b

)
> 0 (3.7)(

b
)

> 0 (3.8)b 0 b

0 1+b
2

√
1−b2

2

b
√

1−b2

2
1+b

2

=

b 0 b
0 0 0
b 0 b

+

0 0 0

0 1+b
2

√
1−b2

2

0
√

1−b2

2
1−b

2

> 0 (3.9)

By the same method one showsρTA > 0.
One can show that all the vectors in the kernel ofρ have to have the form

(A, B, C, 0, κC,−A,−B,−C) where κ =

√
1−b
1+b

. (3.10)

A, B andC are free parameters, i.e. there are three orthogonal vectors in the
kernel. Observe that this construction is not valid in the case ofb = 0 where
dimK{ρ}= 6.
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By looking for vectors orthogonal to all these vectors in the kernel we can also
identify the vectors in the range ofρ. These are product states:

|e, f 〉= |1, α〉⊗ |1,
1
α

,
1

α2 ,
1

α3 +κ〉

=
(

1,
1
α

,
1

α2 ,
1

α3 +κ, α, 1,
1
α

,
1

α2 +κα

)
∈ R{ρ}. (3.11)

In the same way we find|e, f 〉 ∈ R{ρTA}:

|e, f 〉= |1,β 〉⊗ | 1
β 3 +κ,

1
β 2 ,

1
β

,1〉 (3.12)

In order to check ifρ is separable we have to find out whether there is a|e, f 〉 ∈
R{ρ} such that|e∗, f 〉 ∈ R{ρTA}, i.e. if there areα, β such that

|1, α〉⊗ |1,
1
α

,
1

α2 ,
1

α3 +κ〉= |1,β ∗〉⊗ | 1
β 3 +κ,

1
β 2 ,

1
β

,1〉 (3.13)

From Alice’s part we observe thatβ ∗ = α which means that we get the following
conditions:

1

(α∗)3 +κ = 1,
1

(α∗)2 =
1
α

,
1

α∗ =
1

α2 , 1 =
1

α3 +κ. (3.14)

Using the second (or the third) equation we haveα2 = α∗ and we see thatα has
to be a pure phase,α = eiφ , and furthermoreα3 = 1. By the first equation this
meansκ = 0 which givesb = 0 where our construction is not valid. Thus there
exists no|e, f 〉 ∈ R{ρ} such that|e∗, f 〉 ∈ R{ρTA} and (by theorem 3.1)ρ is not
separable for 0< b < 1 (which means that it is PPT entangled becauseρTA > 0).
Other examples use the so called unextendible product bases (UPB) [14]. These
are incomplete orthogonal product bases whose complementary subspace does not
contain any product vector.10

Let |ψi〉 be such an UPB withn members then it one can observe that

ρ = N

(
1−

n

∑
i=1
|ψi〉〈ψi |

)
(3.15)

10 In C3⊗C3 it is easy to see that such a basis is indeed possible. Take 5 orthogonal product
vectors|ei , fi〉, i = 1. . .5. The question is if one can find more product vectors orthogonal to these
such that all the vectors span the whole space, especially if one can find a product vector in the
orthogonal space?

This |e, f 〉 has to fulfill 〈e, f |ei , fi〉 = 〈e|ei〉〈 f | fi〉 = 0 ∀i but if 〈e|e1〉 = 0 = 〈e|e2〉 and (in the
best case)〈 f | f3〉= 0 = 〈 f | f4〉 then neither〈e|e5〉= 0 nor〈 f | f5〉= 0 is possible since Alice’s and
Bob’s space are 3 dimensional only. For explicit examples see [14].

Also notice that inC2⊗CN there exists no unextendible product bases (with less than 2N
members).
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is a PPT entangled state11 (N is a normalization factor).

3.3 Edge States

Def. 3.2 A PPT entangled stateδ is called anedge stateif for any ε > 0 and any
|e, f 〉

δ
′ = δ − ε|e, f 〉〈e, f | (3.16)

is not a PPT (entangled) state (i.e. eitherδ ′ 6≥ 0 or (δ ′)TA 6≥ 0).

This means that it is not possible to subtract a projection on a product state from
an edge state without loosing the property ofδ being positive definite and PPT.
By lemma 2.2 (which was valid in arbitrary dimensions) this can be put in the
following form:

Lemma 3.1 A PPT entangled stateρ is an edge state iff there existsno |e, f 〉 ∈
R{ρ} such that|e∗, f 〉 ∈ R{ρTA}.

Proof: lemma 2.2 states that ifρ is PPT and there exists|e, f 〉 ∈ R{ρ} such that
|e∗, f 〉 ∈ R{ρTA} thenρ can be decomposed asρ = ρ ′+ Λ|e, f 〉〈e, f | keepingρ ′

positive definite and PPT. Since by definition the latter is not true for edge states
no such|e, f 〉 can exist.
The importance of the edge states in the discussion of entangled states comes
from the possibility to decompose PPT entangled states into a separable state and
an edge state as stated in the following lemma which we will not proof here. A
proof can be found in [10], [15].

Theorem 3.2 LEWENSTEIN, SANPERA, BRUSS

Every PPT entangled state can be written as

ρ = λρs+(1−λ )δ (3.17)

whereρs is separable andδ is an edge state andλ ≤ 1.
There exists an optimal decomposition of this form for whichλ is maximal.

Notice thatλ being maximal means that we put all the information about the
entanglement in the edge state. The advantage of the edge stateδ as opposed toρ
is that is has generically lower rank.
Figure 1 illustrates the space of all states, separable states, PPT states and PPT
entangled states. All these sets except the set of PPT entangled states are convex
and compact (i.e. bound and closed). Because of their definition the edge states
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All States

Separable States

PPTES

PPT States

+

Figure 1: Schematic representation of the space of separable states, entangled
states and the PPT entangled states.

Figure 2: Illustration of lemma 3.2 (left) and lemma 3.3 (right).

29



can be found on the boundary between the PPT entangled states and the PPT
states.
The sumρ = aρs + bδ is found by connectingρs andδ by a straight line and
dividing the line in the ratioa/b such thatρ is closer toρs if a> b and closer toδ
if b> a. The left part of figure 2 illustrates the decomposition given in lemma 3.2.
That such a decomposition always exists is already obvious from the fact that all
the sets are convex.
If we don’t care about the PPT entangled states and just look at separable and
entangled states it is clear that a similiar decomposition has to exist (c.f. also the
right part of figure 2). The resulting edge state then lies on the boundary of the
entangled states such that subtracting a product projector would result in a not
positive definite state. Thus we have the following theorem.

Theorem 3.3 LEWENSTEIN, SANPERA, BRUSS

Every entangled stateρ can be written as

ρ = λρs+(1−λ )δ (3.18)

whereρs is separable andδ ≥ 0 has no product vectors in its range andλ ≤ 1.
Again there exists an optimal decomposition.

11 Because TA maps1 to 1 and the UPB to another UPB we haveρTA ≥ 0 and furthermoreρ is
entangled because by the definition of the UPB there is no product vector in the range.
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4 Entanglement Witnesses and Positive Maps

4.1 Entanglement Witnesses

4.1.1 Technical Preface

For several proofs we will need the following

Lemma 4.1 Tr
(
ρTAσ

)
= Tr

(
ρσTA

)
Proof:
Using the usual notation

σ = ∑σ
i j

kl
|i j 〉〈kl| (4.1)

ρ = ∑ρ
i j

kl
|i j 〉〈kl| (4.2)

σ
TA = ∑σ

i j
kl
|k j〉〈il | (4.3)

we have

Tr
(
ρ

TAσ
)

= Tr

(
∑

i jkli ′ j ′k′l ′
ρ

i j
kl
|k j〉〈il |σ i′ j ′

k′l ′
|i′ j ′〉〈k′l ′|

)
= ∑

i jkl

ρ
i j

kl
σ

il
k j

= Tr

(
∑

i jkli ′ j ′k′l ′
ρ

i j
kl
|i j 〉〈kl|σ i′ j ′

k′l ′
|k′ j ′〉〈i′l ′|

)
= Tr

(
ρσ

TA
)
. (4.4)

Observation:
The space of linear operators acting onH (denoted byB(H )) is a HILBERT

space itself with the (EUCLEDIAN) scalar product:

〈A|B〉= Tr
(

A†B
)

A,B∈B(H ) (4.5)

This scalar product is equivalent to writingA andB row wise as vectors and scalar
multiplying them:

Tr
(

A†B
)

= ∑
i j

A∗i j Bi j =
dimH 2

∑
k=1

a∗kbk (4.6)
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4.1.2 Entanglement Witness

Central to this and the following sections is the HAHN-BANACH theorem which
we will present here limited to our situation and without proof (see e.g. [16] for a
proof of the more general theorem):

Theorem 4.1 Let S be a convex compact set in a finite dimensionalBANACH

space. Letρ be a point in the space withρ 6∈ S. Then there exists a hyperplane12

that separatesρ from S.

ρ

S

Figure 3: Schematic picture of the HAHN-BANACH theorem. The (unique) unit
vector orthonormal to the hyperplane can be used to defineright andleft in respect
to the hyperplane by using the signum of the scalar product.

Figure 3 motivates the introduction of a new coordinate system located within the
hyperplane (supplemented by an orthogonal vectorW which is chosen such that it
points away fromS). Using this coordinate system every stateρ can be character-
ized by its distance from the plane by projectingρ onto the chosen orthonormal
vector and using the trace as scalar product, i.e. Tr(Wρ). This measure is either
positive, zero or negative. According to our choice of basis in figure 3 every sep-
arable state has a positive distance while there are some entangled states with a
negative distance. More formally this can be phrased as:

Def. 4.1 A hermitian operator (an observable) W is called an entanglement wit-
ness (EW) iff

∃ρ Tr(Wρ) < 0 (4.7)

∀σ ∈ S Tr(Wσ)≥ 0. (4.8)

Later on we will chooseW such that the set ofρ detected byW is maximized by
choosingW tangent toS.

12A linear subspace with dimension one less than the dimension of the space itself.
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S

PPT

NPPT
ρ

ρ

1

2
EW1

EW2

Figure 4: Schematic view of the HILBERT-space with two statesρ1 andρ2 and
two witnessesW1 andW2. W1 is a decomposable EW and it does only detect
NPPT states likeρ1. W2 is a nd witness and it detects also some PPT states like
ρ2. Note that neither witness detectsall entangled states.

Def. 4.2 An EW is decomposable iff there exists operators P, Q with

W = P+QTA P,Q≥ 0. (4.9)

Lemma 4.2 Decomposable EW cannot detect PPT entangled states.

Proof:
Let δ be a PPT entangled state and EWW be decomposable then

Tr(Wδ ) = Tr(Pδ )+Tr
(
QTAδ

)
= Tr(Pδ )+Tr

(
Qδ

TA
)
≥ 0. (4.10)

Here we used lemma 4.1.

Def. 4.3 A EW is called non-decomposable entanglement witness (nd-EW) iff
there exists at least one PPT entangled state which the witness detects.

Using these definitions we can restate the consequences of the HAHN-BANACH

theorem in several ways:

Theorem 4.2 1. ρ is entangled iff∃ a witness W such thatTr(ρW) < 0.

2. ρ is a PPT entangled state iff∃ a nd-witness W such thatTr(ρW) < 0.

3. σ is separable iff∀ EWTr(Wσ)≥ 0.

From a theoretical point of view this theorem is quite powerful. However, it is not
useful for constructing witnesses that detect a given stateρ.
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4.1.3 Examples

1. A decomposable witness

W′ = P+QTA (4.11)

detects all separable statesσ , i.e.

∀σ ∈ S Tr
(
W′

σ
)
≥ 0. (4.12)

Proof:
If σ is separable then it can be written as a convex sum of product vectors
(see eqn. (2.17)). So if any product vector|e, f 〉 is detected any separable
state will be detected also.

Tr
(
W′|e, f 〉〈e, f |

)
= 〈e, f |W′|e, f 〉 (4.13)

= 〈e, f |P|e, f 〉︸ ︷︷ ︸
≥0

+〈e, f |QTA|e, f 〉︸ ︷︷ ︸
≥0

because (4.14)

〈e, f |QTA|e, f 〉= Tr
(
QTA|e, f 〉〈e, f |

)
= Tr(Q|e∗, f 〉〈e∗, f |)≥ 0 (4.15)

Here we used lemma 4.1 andP,Q≥ 0.

This argumentation shows thatW = QTA is a suitable witness also.

If we take the simplest case (2×2) we can use

|φ+〉=
1√
2

(|00〉+ |11〉) (4.16)

to create the density matrix

Q =


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2

 QTA =


1
2 0 0 0
0 0 1

2 0
0 1

2 0 0
0 0 0 1

2

 . (4.17)

One can quickly verify that indeedW = QTA fulfills the witness require-
ments. Using

|ψ−〉=
1√
2

(|01〉− |10〉) (4.18)

we can rewrite the witness:

W = QTA =
1
2

(
1−2|ψ−〉〈ψ−|

)
(4.19)

This witness now detects|ψ−〉:

Tr
(
W|ψ−〉〈ψ−|

)
=−1

2
(4.20)
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Def. 4.4 The (decomposable) EW W is tangent to S (to P) iff∃σ ∈ S (exists
a ρ ∈ P) withTr(Wσ) = 0 (Tr(Wρ) = 0).

The witness chosen in eqn. (4.19) is tangent onS because for any state
|e,e⊥〉 (i.e. |01〉) we have a local unitary transformation

U⊗U |10〉= |e,e⊥〉 and (4.21)

U⊗U |ψ−〉= eiϕ |ψ−〉 (4.22)

because|ψ−〉 is a singlet state which must be transformed into a singlet
state (with a possible phase) under any unitary transformation.

Now we can calculate

〈e,e⊥|ψ−〉〈ψ−|e,e⊥〉= 〈01|U†⊗U†|ψ−〉〈ψ−|U⊗U |01〉

= eiϕe−iϕ〈01|ψ−〉〈ψ−|01〉=
1
2

(4.23)

Tr
(
W|e,e⊥〉〈e,e⊥|

)
=

1
2

(
1−2

1
2

)
= 0. (4.24)

2. Let ρ be a PPT entangled state with dimensionM×N (andMN > 6) then
we can writeρ according to theorem 3.2 as

ρ = ΛρS+(1−Λ)δ (4.25)

whereρS is a separable state andδ is an edge state andλ ≤ 1.

Lemma 4.3 If a nd-EW W detectsρ then it also detectsδ , i.e. Tr(Wδ ) < 0.

Proof:

0 > Tr(ρW) = Tr
(
ΛρSW

)︸ ︷︷ ︸
≥0

+(1−Λ)Tr(δW)≥ (1−Λ)Tr(δW) (4.26)

Therefore we can concentrate on edge states.

3. We are now looking for nd-EW for edge states.

Def. 4.5

W̃ = PK{δ}+(P
K{δ

TA}
)TA (4.27)

is called a pre-witness. Here PK{δ} is a projector on the kernel of the edge

stateδ .
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Lemma 4.4 ∀|e, f 〉 〈e, f |W̃|e, f 〉 ≥ ε > 0.

Proof:
Let’s suppose there exists a state which fulfills

0 = 〈e, f |W̃|e, f 〉 then (4.28)

0 = 〈e, f |PK{δ}|e, f 〉+ 〈e∗, f |P
K{δ

TA}
|e∗, f 〉. (4.29)

Since any projector fulfillsP≥ 0 we must have

PK{δ}|e, f 〉= 0 ⇒ |e, f 〉 ∈ R{δ} (4.30)

P
K{δ

TA}
|e∗, f 〉= 0 ⇒ |e∗, f 〉 ∈ R{δ

TA}. (4.31)

This contradicts the properties of edge states as shown in lemma 3.1.

So if we denote

0 < ε0 = min
|e, f 〉

〈e, f |W̃|e, f 〉 (4.32)

we can construct a whole family of entanglement witnesses:

W = W̃− ε1 0 < ε ≤ ε0 (4.33)

W is non-negative on separable states

〈e, f |W|e, f 〉= 〈e, f |W̃− ε1|e, f 〉 ≥ ε0− ε ≥ 0 (4.34)

and negative on the edge stateδ

Tr(Wδ ) = Tr
(
W̃δ
)
− ε =−ε (4.35)

because if we denote a basis of K{δ} (K{δ TA}) with |k〉 ∈CN⊗CM (|k̃〉 ∈
C

N⊗CM), k = 1, . . . ,dimK{δ} (k̃ = 1, . . . ,dimK{δ TA}) then

Tr
(

PK{δ}δ
)

= Tr

(
∑
kk′
|k〉〈k′|δ

)
= ∑

kk′
〈k′|δ |k〉= 0 (4.36)

Tr

(
PTA

K{δ
TA}

δ

)
= Tr

(
P

K{δ
TA}

δ
TA

)
= Tr

(
∑̃
kk̃′
|k̃〉〈k̃′|δ TA

)
= ∑̃

kk̃′
〈k̃′|δ TA|k̃〉= 0. (4.37)
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4.2 Positive Maps

4.2.1 Introduction

So far we only considered states in HILBERT spaces and operators acting on these
states. Now we go one step further and look at the so-called maps which can be
seen assuperoperatorsmanipulating the operators in HILBERT space. Throughout
this section we will denote the various HILBERT spaces byHB, HC and so on and
the set of linear operators acting onHB asB (HB). We start by defining linear
maps:

Def. 4.6 A linear, self-adjoint mapε is a transformation

ε : B (HB)→B
(
HC

)
(4.38)

which

• is linear

ε(αO1 +βO2) = αε(O1)+βε(O2) ∀O1, O2 ∈B (HB) α,β ∈C
(4.39)

• and maps hermitian operators to hermitian operators:

ε(O†) = (ε(O))† ∀O∈B (HB) . (4.40)

For brevity we will only write linear map instead of linear self adjoint map.
The following definitions help to further characterize linear maps.

Def. 4.7 A linear mapε is called trace preserving if

Tr(ε(O)) = Tr(O) ∀O∈B (HB) . (4.41)

Def. 4.8 Positive map
A linear, self adjoint mapε is called positive if

∀ ρ ∈B (HB) with ρ
† = ρ, ρ ≥ 0 ⇒ ε(ρ)≥ 0. (4.42)

This means that positive maps have the property of mapping positive operators
onto positive operators. It will turn out to be important to consider maps on the
tensor product of a positive operator acting on one subsystem A and the identity
acting an another subsystem B. In this case we define

Def. 4.9 Completely positive map
A positive linear mapε is completely positive if for any tensor extension of the
form

ε ′ : B
(
HA⊗HB

)
→ B

(
HA⊗HC

)
ε ′ = IA⊗ ε

(4.43)

ε ′ is positive.
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4.2.2 Examples

Hamiltonian evolution of a quantum system Let O∈B (HB) andU an uni-
tary matrix and defineε by

ε : B
(
HA

)
→ B

(
HA

)
ε(O) = UOU† (4.44)

As an example for this map consider the time-evolution of a density matrix. It can
be written asρ(t) = U(t)ρ(0)U†(t), i.e. in the form given above.
Clearly this map is linear, self-adjoint, positive and trace-preserving. It is also
completely positive because for 0≤ w∈B

(
HA⊗HB

)
(IA⊗ ε)w = (1A⊗U)w(1A⊗U†) = ŨwŨ† (4.45)

whereŨ is unitary. But then〈ψ|ŨwŨ†|ψ〉 ≥ 0 iff 〈ψ|w|ψ〉 ≥ 0 (since positivity
is not changed by unitary evolution).

Hamiltonian evolution of a system and its environment Let ρ ∈B (HB) (the
system) andσ ∈B

(
HA

)
(theenvironment) be positive operators and define

ε : B (HB) → B (HB)
ε(ρ) = TrA

(
Uσ ⊗ρU†

) (4.46)

whereU ∈B
(
HA⊗HB

)
is unitary. This map describes the time-evolution of a

system together with the environment. It is obviously linear, self-adjoint and it is
also trace preserving because

Tr(ε(ρ)) = TrB

(
TrA

(
Uσ ⊗ρU†

))
= Tr

(
Uσ ⊗ρU†

)
= Tr

(
σ ⊗ρUU†

)
= Tr(σ ⊗ρ) . (4.47)

K RAUS’ representation of completely positive maps Consider a set of matri-
ces{Ai : HB →HC} and the map

ε : B (HB) → B (HB)
ε(ρ) = ∑K

i=1AiρA†
i

(4.48)

This map is obviously linear and self-adjoint. It is trace preserving if and only if

K

∑
i=1

A†
i Ai = 1C. (4.49)
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It is positive

〈ψ|ε(ρ)|ψ〉= ∑
i
〈ψ|AiρA†

i |ψ〉= ∑
i
〈A†

i ψ|ρ|A†
i ψ〉 ≥ 0, (4.50)

completely positive because

(IA⊗ ε)w = ∑
i
(1A⊗Ai)w(1A⊗A†

i ) (4.51)

and

〈ψ|(IA⊗ ε)w|ψ〉= ∑
i
〈(1A⊗A†

i )ψ|w|(1A⊗A†
i )ψ〉 ≥ 0. (4.52)

Transposition An example for a positive but not completely positive map is the
transposition T defined as:

T : B (HB) → B (HB)
T(ρ) = ρT (4.53)

Of course this map is positive but it is not completely positive because

(IA⊗T)w = wTB (4.54)

and we know that there are states withρ ≥ 0 butρTB ≤ 0.

4.2.3 Decomposable Maps

Def. 4.10 A positive map is called decomposable if and only if it can be written
as

ε = ε1 + ε2T (4.55)

whereε1, ε2 are completely positive maps andT is the operation of transposition
introduced in section 4.2.2.

Theorem 4.3 HORODECKI

A stateρ ∈B
(
HA⊗HB

)
is separable iff for all positive maps

ε : B (HB)→B
(
HC

)
(4.56)

we have

(IA⊗ ε)ρ ≥ 0. (4.57)
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Proof:
[⇒] ρ is separable so we can write it as

ρ =
P

∑
k=1

pk|ek fk〉〈ek fk|=
P

∑
k=1

pk|ek〉〈ek|⊗ | fk〉〈 fk| (4.58)

for someP > 0. On this state(IA⊗ ε) acts as

(IA⊗ ε)ρ =
P

∑
k=1

pk|ek〉〈ek|⊗ ε
(
| fk〉〈 fk|

)
≥ 0 (4.59)

where the last≥ follows because| fi〉〈 fi | ≥ 0 andε is positive.
[⇐] This direction is not as easy as the only if direction. We will prove it in
section 4.2.4.
Note that theorem 4.3 can also be cast into the following form:

Theorem 4.4 HORODECKI

A stateρ ∈B
(
HA⊗HB

)
is entangled if and only if there exists a positive map

ε : B (HB)→B
(
HC

)
such that

(IA⊗ ε)ρ 6≥ 0. (4.60)

4.2.4 Jamiołkowski Isomorphism

In order to complete the proof of theorem 4.3 we introduce first the JAMIOŁKO -
WSKI isomorphism [17] between operators and maps.
Given an operatorE ∈B

(
HB⊗HC

)
and an orthonormal product basis|k, l〉 we

define a map by

ε : B (HB) → B
(
HC

)
(4.61)

ε(ρ) = ∑
k1,l1,k2,l2

BC〈k1l1|E|k2l2〉BC |l1〉CB〈k1|ρ|k2〉BC〈l2|

or in short form

ε(ρ) = TrB

(
Eρ

TB
)
. (4.62)

This shows how to construct the mapε from a given operatorE. To construct an
operator from a given map we use the state

|ψ+〉=
1√
M

M

∑
i=1
|i〉B′|i〉B (4.63)
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(whereM := dim HB) to get

M
(
IB′⊗ ε

)(
|ψ+〉〈ψ+|

)
= E. (4.64)

One can see this in the following way:(
IB′⊗ ε

)(
|ψ+〉〈ψ+|

)
=
(
IB′⊗ ε

)( 1
M

M

∑
i,i′=1

B′|i〉〈i
′|B′⊗B|i〉〈i

′|B
)

=
1
M

M

∑
i,i′=1

|i〉B′B′〈i
′|⊗

⊗
(

∑
k1,l1,k2,l2

BC〈k1l1|E|k2l2〉BC|k1l1〉BC BC〈k2l2| |i〉BB〈i
′|
)

=
1
M

M

∑
i,i′=1

|i〉B′B′〈i
′|⊗ ∑

l1,l2
BC〈il1|E|i

′l2〉BC |l1〉C C〈l2|

=
1
M

(
∑
i,l1

|il1〉〈il1|
)
E
(
∑
i′,l2

|i′l2〉〈i
′l2|
)

=
1
M

E (4.65)

Now we can construct the map from the operator and vice versa. This relationship
has the following properties:

Lemma 4.5 1. E≥ 0 iff ε is a completely positive map.

2. E is an entanglement witness iffε is a positive map.

3. E is a decomposable entanglement witness iffε is decomposable.

4. E is a non-decomposable entanglement witness iffε is non-decomposable
and positive.

As an example we will give a proof of the "only if" direction of the second state-
ment. LetE ∈B

(
HB⊗HC

)
be an entanglement witness. Then〈e, f |E|e, f 〉 ≥ 0.

By the JAMIOŁKOWSKI isomorphism the corresponding map is defined asε(ρ) =
TrB

(
EρTB

)
whereρ ∈B (HB).

We have to show that

C〈φ |ε(ρ)|φ〉C = C〈φ |TrB

(
Eρ

TB
)
|φ〉C ≥ 0 ∀|φ〉C ∈HC. (4.66)

Sinceρ acts in Bobs space we get (using the spectral decomposition ofρ)

ρ = ∑
i

λi |ψi〉〈ψi | ; ρ
TB = ∑

i
λi |ψ

∗
i 〉〈ψ∗

i | (4.67)
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where allλi ≥ 0. Then

C〈φ |ε(ρ)|φ〉C = C〈φ |∑
i

TrB

(
Eλi |ψ

∗
i 〉B B〈ψ

∗
i |
)
|φ〉C

= ∑
i

λi BC〈ψ
∗
i ,φ |E|ψ∗

i ,φ〉BC≥ 0. (4.68)

We are now able to proof the⇐ direction of theorem 4.3 or, equivalently, the⇒
direction of theorem 4.4. We thus have to show that takingρAB to be entangled
there exists a positive mapε : B

(
HA

)
→ B

(
HC

)
such that(ε⊗ IB)ρ is not

positive definite.
If ρ is entangled then there exists an entanglement witnessWAB such that

Tr
(
WABρAB

)
< 0 (4.69)

Tr
(
WABσAB

)
≥ 0 (4.70)

for all separableσAB. WAB is an entanglement witness (which detectsρAB) iff WT
AB

(note the complete transposition!) is also an entanglement witness (which detects
ρT

AB)13. We define a map by

ε : B
(
HA

)
→ B

(
HC

)
ε(ρ) = TrA

(
WT

ACρ
TA
AB

) (4.73)

where dimHC = dimHB ≡M. Then

(ε⊗ IB)(ρAB) = TrA

(
WT

ACρ
TA
AB

)
= TrA

(
WTC

AC
ρAB

)
= ρ̃CB (4.74)

where we used that Lemma 4.1 and T= TA◦TC.
To complete the proof we will show thatρ̃CB 6≥ 0. With the maximally entangled

13 This holds because

〈e f|WT
AB|e f〉= 〈e∗ f ∗|WAB|e

∗ f ∗〉 ≥ 0 (4.71)

(soWT
AB is positive on product states whenWAB is) and

Tr
(
WT

ABρ
T
AB

)
= Tr

(
WABρAB

)
< 0 (4.72)

(it detectsρT
AB).
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state|ψ+〉CB = 1√
M

∑i |ii〉CB where{|i〉} denotes a real, orthongonal basis we find

CB〈ψ
+|TrA

(
WTC

AC
ρAB

)
|ψ+〉CB =

1
M ∑

i
CB〈ii |TrA

(
WTC

AC
ρAB

)
∑

j
| j j 〉CB

=
1
M ∑

i j
TrA

(
C〈i|W

TC
AC
| j〉C B〈i|ρAB| j〉B

)
=

1
M ∑

i j
TrA

(
C〈 j|WAC|i〉C B〈i|ρAB| j〉B

)
=

1
M ∑

i j
TrA

(
TrC
(
WAC|i〉CC〈 j|

)
TrB

(
ρAB| j〉BB〈i|

))
=

1
M

TrABC

(
WACρAB∑

i
|i〉CB〈i|︸ ︷︷ ︸
1CB

∑
j
| j〉BC〈 j|︸ ︷︷ ︸

1BC

)

=
1
M

TrAB

(
WABρAB

)
< 0. (4.75)

This concludes the proof that there exists a mapε with ε(ρ) 6≥ 0.

4.2.5 Comparison of Witnesses and Maps

In this section we developed a strong relation between entanglement witnesses
and maps. Notice that an entanglement witness only gives one condition (namely
Tr(Wρ) < 0) while for a map(ε⊗IB)ρ has to be positively definite, i.e. there are
many conditions that have to be fulfilled. Thus a map is much stronger.
This can also be seen from the fact that if the map detectsρAB, i.e. if

TrA

(
WACρ

TA
AB

)
= ρ̃CB < 0 (4.76)

then it detects also

MBρABM†
B = ρ

′
AB (4.77)

whereMB is invertible (det(MB) 6= 0). This operation in general changes the trace
so it corresponds to a partial measurement. Notice thatMB only acts in Bobs space
and thus

TrA

(
WAC

(
ρ
′
AB

)TA

)
= ρ̃

′
BC = MBρ̃CBM†

B. (4.78)

Then if there is a|ψ〉 ∈HCB such that

〈ψ|ρ̃BC|ψ〉< 0 (4.79)

43



it follows that

〈ψ ′|ρ̃ ′BC|ψ
′〉< 0 with |ψ ′〉=

(
M†

B

)−1
|ψ〉 (4.80)

because

〈ψ|M−1
B MB︸ ︷︷ ︸

1

ρ̃BCM†
B

(
M†

B

)−1

︸ ︷︷ ︸
1

|ψ〉< 0, (4.81)

i.e. the map also detectsMBρABM†
B. A map that detects one entangled state thus

detects a complete family of states. This means that given a witness that detects
ρAB we are able to construct a corresponding map that detects not onlyρAB (and all
the other states detected by the witness) but alsoMBρABM†

B which does not have
to be detected by the witness since it is in general not possible to say whether

TrA

(
WABMBρABM†

B

)
< 0 or ≥ 0. (4.82)

While the witnesses are much weaker in detecting entanglement we will show
in chapter 6 that this concept is able to provide a more detailed classification of
entangled states.
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5 Classification of Separable States, Entanglement
Witnesses and Positive Maps

To classify separable states, entanglement witnesses (EW) and positive maps (PM)
we want to remind the reader especially of theorem 3.3 and definition 4.4. We
denote the space of seperable states withS and the space of PPT states withP
whereS⊆ P. The following classification is based on [15].

Lemma 5.1 Let δ be an edge state and W
δ

= P+ QTB with R{P} = K{δ} and
R{Q}= K{δ TB} then

W = W
δ
− ε1 (5.1)

is an non-decomposable EW for

0 < ε ≤ ε0 = inf
|e, f 〉

〈e, f |W
δ
|e, f 〉. (5.2)

As shown in eqn. (4.33)W is a witness which detects the PPT entangled edge state
δ and is thus non-decomposable (by definition 4.3).

Lemma 5.2 The stateσ is separable iff for all EW’s tangent to STr(Wσ)≥ 0.

The direction⇒ is fulfilled simply by definition of the witness. So we only have
to show the other direction.
Proof:
Supposeσ 6∈ S. Then∃W with Tr(Wσ) < 0. Now we can calculate

ε0 = inf
|e, f 〉

〈e, f |W|e, f 〉 ≥ 0. (5.3)

If ε0 = 0 thenW is tangent toS. But we required Tr(Wσ)≥ 0 for any tangentW
which contradicts the assumption Tr(Wσ) < 0.
If ε0 6= 0 thenW̃ = W−ε01 is tangent toS. But we required Tr

(
W̃σ

)
≥ 0 for any

tangentW̃ which contradicts the assumption Tr
(
W̃σ

)
< Tr(Wσ) < 0.

This leads to the following

Lemma 5.3 If a decomposable witness W is tangent to P atρ then for any de-
composition as in lemma 3.3 W must also be tangent to P atδ and simultaneously
to S atρS.

Proof:

Tr(Wρ) = 0 = Tr
(
W
(
ΛρS+(1−Λ)δ

))
= ΛTr

(
WρS

)
+(1−Λ)Tr(Wδ )≥ 0 (5.4)
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The first addend is positive becauseρS is separable and the second addend is pos-
itive becauseW is a decomposable witness andδ is a PPT state (c.f. eqn. (4.10)).
Thus Tr

(
WρS

)
= Tr(Wδ ) = 0. Note that the figures 1, 2 and 4 are therefore

misleading.

Prop. 5.1 If an EW W which does not detect any PPTES is tangent to P at some
edge stateδ then it has the form:

W = P+QTB (5.5)

with R{P} ⊆ K{δ} andR{Q} ⊆ K{δ TB}.

Proof:
If W does not detect PPTES then it has to be decomposable, i.e.

W = P+QTB. (5.6)

Since Tr(Wδ ) = 0 andP,Q≥ 0 we must have Tr(Pδ ) = 0 and

Tr
(
QTBδ

)
= Tr

(
Qδ

TB
)

= 0 (5.7)

which meansP is orthogonal to the range ofδ (i.e. it is in the kernel) andQ is
orthogonal to the range ofδ TB.

Prop. 5.2 Any nd-EW W has the form

W = P+QTB− ε1 with (5.8)

0 < ε ≤ inf
|e, f 〉

〈e, f |P+QTB|e, f 〉 (5.9)

and there exists an edge stateδ for which P, Q fulfill

R{P} ⊆ K{δ} R{Q} ⊆ K{δ
TB}. (5.10)

Proof:
Consider an EW

W(λ ) = W+λ1 (5.11)

which is by lemma 5.1 decomposable forλ > λ0 (calledε0 there) and non-decomposable
for all λ < λ0. So for anyλ < λ0 it detects at least one PPTESρ

λ
. Since the set of

PPTES is compact the series ofρ
λ

converges to the PPT entangled stateρ
λ0

. By
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constructionW(λ0) is decomposable and thus does not detect any PPT entangled
states (lemma 4.2) which means that

Tr
(
W(λ0)ρλ0

)
= 0 (5.12)

soW(λ0) is tangent toP at ρ
λ0

. Thus by lemma 5.3 there exists an edge stateδ

with

Tr
(
W(λ0)δ

)
= 0. (5.13)

By proposition 5.1 we know

W(λ0) = P+QTB (5.14)

and thus

W = P+QTB− ε1 (5.15)

with ε = λ0. HenceW is non decomposable for all 0< ε ≤ λ0 with R{P}⊆K{δ}
and R{Q} ⊆ K{δ TB}. Using lemma 5.1 we know

λ0 = inf
|e, f 〉

〈e, f |W
δ
|e, f 〉. (5.16)

Prop. 5.3 As an extension to proposition 5.2 we consider a nd-EW W of the form

W = P+QTB− ε1 with (5.17)

0 < ε ≤ inf
|e, f 〉

〈e, f |P+QTB|e, f 〉 (5.18)

and someHILBERT spacesHa andHb which fulfill

R{P} ⊥Ha R{Q} ⊥Hb. (5.19)

1. There exists no vector|e, f 〉 ∈Ha such that|e, f ∗〉 ∈Hb.

2. If PHa
(PHb

) is a projector ontoHa (Hb) then

R{TrB

(
PHa

)
}= R{TrB

(
PHb

)
} (5.20)

R{TrA

(
PHa

)
}= R{TrA

(
PHb

)∗
}. (5.21)

3. For x∈ {a,b} we have

dimHx > max
[
r{TrA

(
PHx

)
}, r{TrB

(
PHx

)
}
]
. (5.22)

4. Conjecture: There exists no product vector|e, f 〉 with

〈e, f |PHx
|e, f 〉= 0 (5.23)

where x∈ {a,b}.
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5.1 Separability in 2×N Composite Quantum Systems

We will now focus on quantum systems inC2⊗CN dimensions. An example of
such a system is a two level atom coupled to an harmonic oscillator. To learn about
separability of these states we will again make use of the method of subtracting
vectors (see Section 2.3). The results presented here can be found in [18]. In
what follows we will always denote an orthogonal basis inC

2 as{|0〉, |1〉} and an
orthogonal basis inCN as{|1〉, . . . , |N〉}.
Since we want to subtract product vectors fromρ it is important to know in which
cases such product vectors can be found in the kernel or the range ofρ. Therefore
we start with

Lemma 5.4 Any subspaceH ⊆ C2⊗CN with dim(H ) = M > N contains an
infinite number of product vectors. If M= N it contains at least one product
vector.

Proof: Let {
|ψi〉, i = 1, . . . ,2N−M

}
(5.24)

be a basis in the orthogonal complement ofH . We can write it, using the orthog-
onal basis specified above, as

|ψi〉=
N

∑
k=1

[
Aik|0,k〉+Bik|1,k〉

]
(5.25)

with A andB being(2N−M)×N matrices. We can always write a product vector
|e, f 〉 ∈C2⊗CN as

|e, f 〉=
(
α|0〉A + |1〉A

)
⊗

N

∑
k=1

fk|k〉B, α ∈C∪{∞}, fk ∈C. (5.26)

There exists a product vector inH iff there exists a solution of〈ψi |e, f 〉= 0, i.e.
if all |ψi〉 are orthogonal to|e, f 〉. This conditions yields

(αA∗+B∗)~f = 0. (5.27)

In the caseM > N the number of variables is bigger than the number of equa-
tions and thus there exists a solution for every givenα, i.e. we can find an in-
finite number of solutions. ForM = N we can find nontrivial solutions only if
det(αA∗+B∗) = 0 but since this is a polynomial inα a solution withα ∈C can
always be found.
Takingα ∈R, i.e.α = α∗ in the caseM > N we immediately get
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Lemma 5.5 Any subspaceH ⊆ C2⊗CN with dim(H ) = M > N contains an
infinite number of product vectors of the form

|er , f 〉 where |er〉= |e∗r 〉. (5.28)

In the following we will work with two subspacesH1, H2∈C2⊗CN. Especially
we will chooseH1 = R{ρ} andH2 = R{ρTA}. Furthermore letM1 = dim H1,
M2 = dim H2. We define the orthogonal subspaces

K1,2 =
{
|ψ1,2

i1,2
〉, i1,2 = 1, . . . ,2N−M1,2

}
(5.29)

where

|ψ1,2
i 〉=

N

∑
k=1

[
A1,2

ik |0,k〉+B1,2
ik |1,k〉

]
(5.30)

with (2N−M1,2)×N-matricesA andB.

Lemma 5.6 1. If M1+M2 > 3N then there exists an infinite number of product
states|e, f 〉 ∈H1 such that|e∗, f 〉 ∈H2.

2. If M1 + M2 ≤ 3N then there exists a product state|e, f 〉 ∈ H1 such that
|e∗, f 〉 ∈H2 if we can find anα such that there are at most N−1 linearly
independent vectors among the following vectors:{

α〈ψ1
i |0〉+ 〈ψ1

i |1〉,α∗〈ψ2
i |0〉+ 〈ψ2

i |1〉
}

(5.31)

Proof: Because the subspaces orthogonal toH1 andH2 are spanned by|ψ1
i 〉 and

|ψ2
i 〉, respectively,|e, f 〉 has to fulfill

〈ψ1
i |e, f 〉= 0 and 〈ψ2

i |e∗, f 〉= 0. (5.32)

Writing |e, f 〉 as in equation (5.26) we have[
α(A1)∗+(B1)∗

]
~f = 0 (5.33)[

α
∗(A2)∗+(B2)∗

]
~f = 0, (5.34)

which can be read as 4N−M1−M2 equations for~f . In the caseM1 + M2 > 3N
there are more parameters then equations and there exists a solutions for eachα,
i.e. for each|e〉.
ForM1+M2≤ 3N consider the(4N−M1−M2)×N dimensional matrixM(α,α∗)
composed ofα(A1)∗ + (B1)∗ and α∗(A2)∗ + (B2)∗. There exists a solution of
(5.33, 5.34) only if the rank of this matrix is smaller thanN. This is the condition
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imposed in the lemma. It is interesting to further investigate the conditions that
have to be fulfilled to obtain a solution. In the case ofM1+M2 = 3N this condition
is det[M(α,α∗)] = 0 for someα. The determinant is a polynomial of degree
2N−M1 in in α and of degree 2N−M2 in in α∗.
There is no way to know in advance how many roots such a polynomial has,
nor if it has roots at all. E.g.αα∗+ 1 = 0 has no solutions whileα − (α∗)2 =
0 has infinitely many (all real numbers). IfP∗ 6= P it is possible to reduce the
equationP(α,α∗) = 0 to an equationQ(α) = 0 containing onlyα by solving
P∗(α,α∗) = 0 for α∗ and substituting intoP(α,α∗). In the end however it has
to be checked whether the solutions ofQ(α) = 0 fulfill the original equation. As
an example considerP(α,α∗) = (α∗)2−α = 0. ThenP∗(α,α∗) = α2−α∗ = 0
and thusα∗ = α2. Substitution leads toα4−α = 0 which has the four solutions
(0,1,e−i2π/3,ei2π/3). These are indeed also solutions to(α∗)2−α = 0.
If M1 +M2 < 3N then all theN×N-subdeterminants ofM(α,α∗) have to vanish
(i.e. the determinant of the matrix build from the firstN rows, the determinant
of the matrix build from the firstN−1 rows together with the(N +1)th row and
so on). This implies that several polynomials inα andα∗ have to have common
roots.
The main theorem of this chapter makes a statement on the separability of PPT
states supported14 onC2⊗CN. For this we first note

Lemma 5.7 If ρ is supported onC2⊗CN thenr{ρ} ≥ N.

Proof: Let us assume r{ρ} < N. Then dimK{ρ} ≥ N and from lemma 5.4 we
know that there exist a product vector|e, f 〉 ∈ K{ρ}. Now we can use lemma 2.3
to see that for some|g〉 we can write

ρ = ρ
′
2 +Λ|ê, f 〉〈ê, f | (5.35)

such that r{ρ ′2} = r{ρ}− 1 andρ ′2 is still PPT.ρ ′2 is supported onC2⊗CN−1.
Repeating this we can subtract more projectors on product vectors until finallyρ

is written as a sum of r{ρ} such projectors. But since we assumed r{ρ} < N,
there surely is a vector in Bob’s space orthogonal toρ which is a contradiction to
the assumption thatρ is supported onC2⊗CN.
In the case r{ρ} = N it is furthermore possible to make a statement about the
separability ofρ as given in the following theorem:

Theorem 5.1 Let ρ be PPT and supported onC2⊗CN. If r{ρ} = N thenρ is
separable.

14 A stateρ acting inC2⊗CN is supported onC2⊗CM if the minimal subspaceH ⊆ CN

such that R{ρ} ⊆C2⊗H has dimensionM.
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Proof: The proof is given by induction: The caseN = 1 is clear. Now assume
that the theorem holds forN−1. Then if r{ρ}= N then dimK{ρ}= N and from
lemma 5.4 there exists a product vector|e, f 〉 in the kernel ofρ. Then, using again
lemma 2.3, we can write

ρ = ρ
′
2 +Λ|ê, f 〉〈ê, f |. (5.36)

ρ ′2 has rankN−1 and is supported onC2⊗CN−1 and thus we know it is separable.
There are two easy consequences of this theorem and the last lemma:

Lemma 5.8 If ρ is separable onC2⊗CN then it can be written as a convex sum
of projectors on N product vectors.

Lemma 5.9 If ρ is PPT, supported onC2⊗CN andr{ρ}= N thenr{ρTA}= N.

Finally we can make a statement about separability in the special case thatρ is
not only PPT but alsoρ = ρTA:

Theorem 5.2 If ρ is supported onC2⊗CN andρ = ρTA thenρ is separable15.

Proof: The case ofN = 1 is clear. Now supposing that the caseN−1 is true we
will proof it for N. If r{ρ} = N thenρ is separable by theorem 5.1. Otherwise
as long as r{ρ}> N then by lemma 5.5 there exists|e,g〉= |e∗,g〉 ∈ R{ρ}. Thus
there isΛ > 0 such that

ρ = ρ
′+Λ|e,g〉〈e,g|, ρ

TA =
(
ρ
′)TA +Λ|e∗,g〉〈e∗,g| (5.37)

andρ ′ = (ρ ′)TA and r{ρ ′}= r{ρ}−1. This subtraction of product projectors can
be repeated until r{ρ ′}= N.

15Notice thatρTB does not work!
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6 Schmidt Number Witnesses

6.1 Introduction

Let’s consider the following problem:
Given a mixed state described byρ how can the entanglement be described (es-
pecially: is the state entangled at all) ?
So far we have used witnessesW for this detection where

Tr(Wσ)≥ 0 Tr(Wρ) < 0 (6.1)

for all σ ∈ S and for some entangledρ. We further found that decomposable
witnesses

W = aP+(1−a)QTB (6.2)

cannot detect PPT entangled states.
For bipartite pure states we have

Def. 6.1 |ψ〉 ∈Ha⊗Hb with dimHa = M ≤ dimHb = N hasSCHMIDT rank r
if its SCHMIDT decomposition reads

|ψ〉=
r≤M

∑
i=1

αi |ei〉⊗ | fi〉 (6.3)

with αi > 0 and∑r
i α2

i = 1.

The unique SCHMIDT rank16 describes the number of entangled degrees of free-
dom.
The problem arises when mixed states are considered because there does not exist
a unique SCHMIDT decomposition for them. Instead we define:

Def. 6.2 SCHMIDT number k of the stateρ is defined as

k = min{rmax} (6.4)

where rmax is the maximumSCHMIDT rank within a decomposition and the mini-
mum is taken over all decompositions

For every mixed stateρ there exists an infinite number of developments, i.e.

ρ = ∑
i

Pi |ψ
r i
i
〉〈ψ r i

i
|, (6.5)

16C.f. definition 2.2 for a discussion.
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S S S1 2 3 Sk

Figure 5: Schematic plot of the set of states with different SCHMIDT number
embedded in the space of all states. The subscript denotes the number of entangled
degrees of freedom withS1 ⊂ S2 ⊂ S3 · · · ⊂ Sk ⊂ ·· · ⊂ SM.

where|ψ r i〉 is a pure state of SCHMIDT rank r, is not unique. In every possible
decomposition the maximum SCHMIDT rank rmax of the pure states|ψ r i〉 has to
be determined. The SCHMIDT number is the minimum over allrmax (i.e. over all
possible decompositions).
This definition was introduced by TERHAL and HORODECKI.
It is thus possible to catagorize every stateρ by its SCHMIDT number. We denote
the whole space ofρ by SM (remember: dimH = MN) and the subspace of states
with SCHMIDT number≤ k asSk.
Sk is a compact convex subset ofSM.
How is it possible to determine the SCHMIDT number of an arbitary stateρ acting
onHa⊗Hb ? The solution is based on the previous discussions regarding entan-
glement, i.e. we have to find some kind of SCHMIDT number witness (SNW). In
a first step we generalize the concept of the edge states:

Def. 6.3 δ is an k-edge state iff6 ∃|ψ r〉 ∈R{δ} with r < k, i.e. there exists no state
with SCHMIDT number smaller than k in the range ofδ .

Lemma 6.1 Anyρk ∈ Sk can be written as

ρk = (1− p)ρk−1 + pδ 1≥ p > 0 (6.6)

whereδ is an k-edge state.17

Lemma 6.2 The k-edge stateδ of eqn. (6.6) has generically lower rank thanρk.

Lemma 6.3 The k-edge stateδ of eqn. (6.6) containsall information concerning
theSCHMIDT number k ofρk.

17A proof of this and the following lemmas can be found in [19,10,20].
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Def. 6.4 A hermitian operator W is called aSCHMIDT number witness (SNW) of
class k iff

∀σ ∈ Sk−1 : Tr(Wσ)≥ 0 (6.7)

∃ρ ∈ Sk : Tr(Wρ) < 0 (6.8)

Therefore every witness which detects entanglement is also a SCHMIDT number
witness of class 2.

Lemma 6.4 Every SNW that detectsρ detects alsoδ .

Proof:

0 > Tr
(
Wρk

)
= (1− p)Tr

(
Wρk−1

)
+ pTr(Wδ ) (6.9)

⇔ Tr(Wδ ) <
p−1

p
Tr
(
Wρk−1

)︸ ︷︷ ︸
>0

< 0 (6.10)

with 0 < p≤ 1 and definition 6.4.
Thus the knowledge of all SNW of allk edge states fully characterizes allρ ∈ Sk.

Lemma 6.5 Given a k-edge stateδ , a projector P on the kernel ofδ and ε =
inf

ψ<k〈ψ<k|P|ψ<k〉> 0, then the operator

W = P− ε1 (6.11)

is a SCHMIDT number witness forδ , i.e.

Tr(Wδ ) = 0− ε < 0 (6.12)

Tr
(
Wρ<k

)
≥ 0 (6.13)

whereρ<k = |ψ<k〉〈ψ<k| is an arbitary state withSCHMIDT number smaller than
k.

Proof: Since R{δ} does not contain any|ψ<k〉 by definition they must be all in
the kernel. Furthermore K{δ}= R{P}. So no|ψ<k〉 can be in the kernel ofP and
thusε > 0. Also we have

Tr
(
Wρ<k

)
= Tr

(
Pρ<k

)
−Tr

(
ε1ρ<k

)
≥ ε− ε ≥ 0. (6.14)
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Figure 6: Schematic description of tangent SNW

Lemma 6.6 Every k-SCHMIDT witness can be written in the canonical form

W = W̃− ε1 (6.15)

with R{W̃}= K{δ} with some k-edge stateδ and0 < ε ≤ inf|ψ〉∈Sk−1
〈ψ|W̃|ψ〉.

Proof:
SinceW is an arbitary witness it has to have at least one negative eigenvalue. For
simplicity considerW to be in its eigenbasis. ConstructW̃ = W + ε1 whereε is
equal to the absolut value of the largest negative eigenvalue ofW. By construction
the rank ofW is reduced by (at least) one and thus K{W} 6= /0. SinceW is a SNW
we know that〈ψ<k|W̃|ψ<k〉 ≥ ε > 0 and thus no|ψ<k〉 is in the kernel ofW̃.

Def. 6.5 A k-SCHMIDT witness W is tangent to Sk−1 at ρ if ∃ a stateρ ∈ Sk−1
such thatTr(Wρ) = 0.

Def. 6.6 An SNW W is optimal if there exists no other SNW W′ which detects more
states than W.

Looking at figure 6 motivates again that optimal SCHMIDT witnesses are tangent
to Sk.

6.2 Example for a Schmidt Number Witness

Lemma 6.7 The operator W: Hm→Hm,

W = 1− m
k−1

P with (6.16)

P = |ψ+
m〉〈ψ+

m| and |ψ+
m〉=

1√
m

m

∑
i=1
|ii〉 (6.17)

is a SCHMIDT number witness of class k.
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Proof:
The maximum SCHMIDT number is of coursem. First we show thatW detects a
state withm≥ SN≥ k:

Tr
(
W|ψ+

r 〉〈ψ+
r |
)

= 1− 1
r

r

∑
i,l

1
k−1

m

∑
j,k

〈ii | j j 〉〈kk|ll 〉

= 1− 1
r(k−1)

r

∑
ik

1 = 1− r
k−1

(6.18)

This is negative for allr > k−1 and positive otherwise. SoW detects e.g.|ψ+
k 〉.

Furthermore any state|ψ<k〉 can be written as

ρk−1 =
k−1

∑
i=1

piρi =
k−1

∑
i=1

pi ∑
j=1

q j |ψ
j
i 〉〈ψ

j
i | (6.19)

with ∑i pi = 1, ∑ j q j = 1 and 0≤ pi ≤ 1, 0≤ q j ≤ 1, i.e. as as sum of density
matrices of rank smaller thenk which in turn can be written as a convex sum of
pure states.
We intend to find a lower bound for Tr

(
Wρk−1

)
, i.e. an upper bound for Tr

(
Pρk−1

)
.

In eqn. (6.19) we replaceρi with the maximal entangled state|ψ+
k−1〉 as an up-

per estimate and perform the sum. But for this state we have already shown that

Tr
(
W|ψ+

k−1〉〈ψ
+
k−1|

)
≥ 0.

This witness is furthermore optimal (not shown here).
Note also that this witness is decomposable:

W = P+QTA =
(

1− 1
k−1

)
1+

2PTA
a

k−1
(6.20)

HerePTA
a is the partial transposed projector onto the antisymmetric subspace of

C
m⊗Cm.

As an example consider 2×2 where we can only havek = 2 and we have

W
!=
(

1− 1
1

)
1+

2
1

(
|φ−〉〈φ−|

)TA = 2|ψ−〉〈ψ−|

= 2

(
1

1
2
−|ψ+〉〈ψ+|

)
= 1− 2

2−1
|ψ+〉〈ψ+|= W (6.21)

where we used the BELL states (c.f. eqn (2.8)) and their relation as discussed in
section 4.1.3.
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S1

Figure 7: In 3×3 all PPTES have SCHMIDT rank 2.

6.3 The3×3 case

By lemma 6.7 we know already a SNW of class 2 and 3:

W2 = 1−3P class 2 (6.22)

W3 = 1− 3
2

P class 3 (6.23)

This motivates the following

Conjecture 6.1 In H3⊗H3 all SCHMIDT number witnesses of class 3 are de-
composable which is equivalent to all PPTES haveSCHMIDT rank 2.

Now we can describe the witnesses more in detail:

Lemma 6.8 Any SNW of class 2 has the form

W = Q− ε1 (6.24)

whereK{Q} does not contain any product vector, i.e.r{Q} ≥ 5.

Proof:
According to lemma 6.6W can be written this way whereQ – according to
lemma 6.5 – is a projector on the kernel of an 2-edge stateδ .
K{Q} = R{δ} so by definition of thek-edge-state 6.3 K{Q} cannot contain any
state with SCHMIDT rank 1, i.e. any product vector. As shown in footnote 10 on
page 27 the maximum subspace created by product vectors has the dimension 5
and thus the dimension of K{Q} must not be larger then 4 i.e. r{Q} ≥ 5.
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Lemma 6.9 Any SNW of class 3 has the form

W = Q− ε1 (6.25)

wherer{Q}≥ 8, i.e. W has at least 8 positive and at most one negative eigenvalue.

Proof:
Again by lemma 6.6W can always be written in this form. Simmilarly K{Q} =
R{δ} which means by definition 6.3 that K{Q} cannot contain any state with
SCHMIDT rank 2.
SupposeQ had a two dimensional kernel. In this case choosing|ψ1〉 and|ψ2〉 lin-
early independent and from the kernel we have Tr

(
W|ψ2〉〈ψ2|

)
< 0 with |ψ2〉 ∼

|ψ1〉+ |ψ2〉 – which is a contradiction becauseW should only detect states of
SCHMIDT number 3. Thus K{Q} ≤ 1 or R{Q} ≥ 8.

Theorem 6.1 In H3⊗H3 all PPTES with rank 4 have SN=2.

Proof:
δ is a PPTES with r{δ} = 4 and thus dimK{δ} = 5. Therefore by footnote 10
(see also proof of lemma 6.8) there is at least one product vector|e1, f 〉 ∈ K{δ}.
Sinceδ is a PPT stateδ TA > 0 and thus|e∗1, f 〉 ∈ K{δ TA}.
If we denote an orthogonal basis|ei〉 with i = 1,2,3 in HA we have

〈e1|δ |ei , f 〉= 0 i = 2,3 because (6.26)

〈ei |δ
TA|e∗1, f 〉= 0 (6.27)

and thereforeδ |e2, f 〉 must be orthogonal to|e1〉, i.e.

δ |e2, f 〉= |e2,g〉+ |e3,h〉=: |ψ2〉 (6.28)

which has obviously SCHMIDT rank 2.
Applying lemma 2.1 (c.f. eqn. (2.25)) we can write

δ = δ
′+Λ|ψ2〉〈ψ2| with Λ =

1

〈ψ2| 1
δ
|ψ2〉

(6.29)

and r{δ ′}= 3.
Now

δ
′|e1, f 〉= δ |e1, f 〉−Λ|ψ2〉〈ψ2|e1, f 〉= 0 (6.30)
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because|e1, f 〉 is in the kernel ofδ and orthogonal to|ψ2〉 and

δ
′|e2, f 〉= δ |e2, f 〉−Λ|ψ2〉〈ψ2|e2, f 〉

= |ψ2〉− 1

〈ψ2| 1
δ
|ψ2〉︸ ︷︷ ︸
|e2, f 〉

|ψ2〉〈ψ2|e2, f 〉= 0 (6.31)

but

δ
′|e3, f 〉=

(
δ −Λ|ψ2〉〈ψ2|

)
|e3, f 〉

= |Φ2〉= |e2, g̃〉+ |e3, h̃〉 (6.32)

Again using lemma 2.1 we have

δ
′ = δ

′′+ Λ̃|Φ2〉〈Φ2| δ
′′ > 0 (6.33)

and r{δ ′′}= 2, Λ̃ = (〈Φ2| 1
δ
|Φ2〉)−1.

It is shown the same way as before thatδ ′′|ei , f 〉= 0 for i = 1,2,3. Sinceδ ′′ acts
in 3×2 and it is orthogonal to| f 〉 ∈HB, δ ′′ has at most SN 2. Now in the sum

δ = δ
′′+ Λ̃|Φ2〉〈Φ2|+Λ|ψ2〉〈ψ2| (6.34)

every term has at most SN 2 so the sum can have at most SN 2. But since we
started with an entangled state in the first placeδ must have SN 2.
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A Generalization of the Schmidt Decomposition for
the Three Qubit System

A.1 Motivation

So far three approaches regarding this problem have been made:

1. The Barcelona approach [21] and also [22].

2. The approach from SUDBERY et al. [23].

3. The Innsbruck approach [24].

While the first two approaches are very similar, the Innsbruck approach is differ-
ent.
First we note that entanglement is directly linked to quantum non-locality. If two
states|ψ1〉 and |ψ2〉 can be transformed into each other with probability one by
use of only local operations and classical communication then both states have
the same entanglement which is equivalent to the possibility to transform one
state into the other by unitary transformations:

|ψ1〉 ∼ |ψ2〉 ⇔ (A.1)

|ψ1〉= U1⊗U2⊗·· ·⊗Un|ψ2〉 (A.2)

if |ψi〉 ∈Cd1⊗·· ·⊗Cdn. This motivates to look at bipartite systems with

|ψ1〉, |ψ2〉 ∈C
d1⊗Cd2 and d1 ≤ d2. (A.3)

If we expand both states into an orthonormal system

|ψ1〉=
d1

∑
i=1

αi |ii〉 (A.4)

|ψ2〉=
d1

∑
j=1

α j | j j 〉 (A.5)

then|ψ1〉 ∼ |ψ2〉 ⇔ αi = βi ∀i. If we have e.g. 3 SCHMIDT coefficients and we
remember that states have to have the norm one, we can write

1 = α
2
1 +α

2
2 +α

2
3 with αi > 0 (A.6)

and interpret this as a point in entanglement space.
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Before continuing, we remember how local transformations act on a two qubit
state. If

|ψ〉= ∑
i j

ti j |i〉| j〉 ∈C
2⊗C2

= t00|00〉+ t01|01〉+ t10|10〉+ t11|11〉 with (A.7)

T =
(

t00 t01
t10 t11

)
and (A.8)

|ψ〉= (0,1)A T

(
0
1

)
B

(A.9)

then transformations regarding the first index (i) are multiplications of unitary
operators (U1) from left while transformations regarding the second index (j) are
multiplications from right (withU2). Thus we can write

T ′ = U1TU2 T = U†
1

(
λ1 0
0 λ2

)
U2 (A.10)

|ψ〉= λ1|00〉+λ2|11〉 in the new basis. (A.11)

Now we want to generalize the decomposition to states

|ψ〉 ∈C2⊗C2⊗C2. (A.12)

Using the same notation as before we can write an arbitrary state as

|ψ〉= ∑
i jk

ti jk |i jk〉. (A.13)

To obtain the maximal physical content of that state (in contrast to mathematical
degrees of freedom) we want to obtain a basis in which the maximal number of
t̃i jk ≡ 0, i.e. we want to remove all the superfluous information due to a bad choice
of the local bases. This is equivalent to diagonalizing a tensor with three indices.
The key question is how many coefficients can be always transformed to zero.

A.2 The Barcelona Approach

Since it is difficult to explicitly write down matrices with three indices we split
the matrixT into two matrices:

T0 =
(

t000 t001
t010 t011

)
T1 =

(
t100 t101
t110 t111

)
(A.14)
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Using this notation local transformations on the second (third) subsystem are
again simply multiplications of the respective matrices from left (right). Trans-
formations on the first subsystem with

U =
(

α β

−β ∗ α∗

)
, (A.15)

UU† = 1, detU = 1 and thus|α|2 + |β |2 = 1 mix the two matrices:

T ′0 = αT0 +βT1 (A.16)

T ′1 =−β
∗T0 +α

∗T1 (A.17)

Since we still have a free parameter in the transformation we require

det(T ′0) = 0 = det(αT0 +βT1) ⇔ det(T0 +xT1) = 0 (A.18)

wherex = β

α
an unbound variable. The determinant is a quadratic equation for

complex values and is thus always solvable. We denote the solutions withx0 and
x̄0.
Now we choose transformations in system two and three such that

U2T ′0U3 = T ′′0 =
(

λ0 0
0 0

)
. (A.19)

This is possible since det(U2T ′0U3) = det(U2U3) ·det(T ′0) = 0 and thus at least one
eigenvalue vanishes. With this choice of transformation the second matrix now
reads

U2T1U3 =
(

λ1eiϕ λ2
λ3 λ4

)
(A.20)

with λi ∈ R+, 0≤ λi ≤ 1 and∑i λ
2
i = 1. All phases exceptϕ are absorbed by

redefining the local bases by a phase factor, which is always possible.
Thru this smart choice of local transformations|ψ〉 now reads

|ψ〉= λ0|000〉+λ1eiϕ |100〉+λ2|101〉+λ3|110〉+λ4|111〉, (A.21)

i.e. we have now 6 real parameters. In general we cannot have less than six. This
can be shown as follows:
The entire space (regarding its product nature) isC

2×C2×C2. It has the complex
dimension 2·2·2= 8 or accordingly 16 real parameters. There are several possible
counting mechanisms for the minimum number of parameters:
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1. In everyC2 subspace we can describe the most general basis for states by

|0〉= eiΘ
( √

p√
1− peiϕ

)
|1〉= eiΘ

( √
1− p

−√peiϕ

)
. (A.22)

with p ∈ {0. . .1} and ϕ,Θ ∈ {0,2π}. Since the overall phaseΘ corre-
sponds to a rotation of the coordinate system in this subspace (a local ro-
tation) it bears no physical relevance and we can consider it in our choice
of ti jk . Therefore we need two real parameters for every subspace and thus

six parameters for a general state inC2⊗C2⊗C2. Thus we can choose an
new basis by an appropriate rotation which transforms the remaining five
complex parameters to zero.

2. We must be capable to parameterize the most general transformation on the
states. Such transformation belong to

U(1)×SU(2)×SU(2)×SU(2). (A.23)

Each local transformation is described by a special unitary transformation (3
parameters instead of 4 because detU = 1) and we can globally add a phase
(or collect all local phase to one global phase). So we have 1+3×3 = 10
parameters for the transformation and thus 6 parameters remain in the state
independently of the basis chosen.

In eqn. (A.18) we could have have chosen the solution ¯x0 instead ofx0; in this
case we would have gotten

|ψ〉= λ̃0|0̃0̃0̃〉+λ1eiϕ̃ |1̃0̃0̃〉+ λ̃2|1̃0̃1̃〉+ λ̃3|1̃1̃0̃〉+ λ̃4|1̃1̃1̃〉. (A.24)

It can be shown that if we require

0 < ϕ < π (A.25)

(or alternativelyπ < ϕ̃ < 2π) the parameters are uniquely defined. Therefore we
can compare the entanglement of two states by decomposing both and comparing
the 6 parameters.
It should be noted here that separable states of course have only oneλi 6= 0. Be-
sides this criteria, there is is no measure of entanglement, i.e. it is impossible to
tell if one state is "more entangled" then another one.

A.3 The Sudbery Approach

Again we describe an arbitrary state by

|ψ〉= ∑
i jk

ti jk |i jk〉 (A.26)
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and we want to obtain as many zero parameters as possible. To achieve this we
choose a new basis which obeys

max
α,β ,γ

|〈α,β ,γ|ψ〉|2 = t2
111. (A.27)

This fixes the basis in each subsystem:

|1〉A := |α〉 fixes|0〉A (A.28)

|1〉B := |β 〉 fixes|0〉B (A.29)

|1〉C := |γ〉 fixes|0〉C (A.30)

We again obtain the same form for the wave function:

|ψ〉= λ0|000〉+λ1eiϕ |100〉+λ2|101〉+λ3|110〉+λ4|111〉 (A.31)

i.e. t110 = t011 = t101 = 0. If e.g. t011 6= 0 then|ψ〉 would contain the two terms

t011|011〉+ t111|111〉= (a|0〉+b|1〉) |11〉= |α ′
βγ〉. (A.32)

It can be shown that if e.g.t011∈R+ then

b >
t2
111− t2

022

t2
111+ t2

011

< 1 (A.33)

and therefore

∃b such that|〈α ′
βγ|ψ〉|2 > |〈αβγ|ψ〉|2 (A.34)

which violates the maximum requirement in eqn. (A.27).
The SUDBERY-criteria cannot determine whether the decomposition is unique or
not. Its main advantage lies in the fact that it can be easily extended to system
with more qubits.

A.4 The Innsbruck approach

If we look at pure statesψ ∈C2⊗C2 we know that we can always write them as

ψ = α0|00〉+α1|11〉 (A.35)

where the local basis does not need to be orthogonal.
For generic pure statesψ ∈C2⊗C2⊗C2 we still need only two product states:

|ψ〉= α|000〉+β |abc〉 (A.36)
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Here also〈0|a〉 6= 0, 〈0|b〉 6= 0 and〈0|c〉 6= 0 are possible.
Proof:
From eqns. (A.20) and (A.24) we know the two decompositions possible. In these
cases we see that

A〈0|ψ〉ABC = |0〉B|0〉C (A.37)

A〈0̄|ψ〉ABC = |0̄〉B|0̄〉C (A.38)

are product states. This means we have to show

A〈1|ψ〉 ∼ |bc〉BC A〈a⊥|ψ〉 ∼ |00〉BC (A.39)

with 〈a|a⊥〉= 0.
When we created the states we used the requirement

det(T ′0) = 0 ⇔ px2 +qx+ r = 0 (A.40)

in eqn. (A.18) which yields two solutionsx0 andx̄0. But if

q2−4pr = 0 we have x0 = x̄0 (A.41)

which causes|0〉= |0̄〉.
It can be shown that in this case

|ψ〉= λ0|000〉+λ1eiϕ |100〉+λ2|101〉+λ3|110〉 (A.42)

i.e. λ4 ≡ 0. In this case the Innsbruck decomposition is not possible.
If λ4 6= 0 we rewrite eqn. (A.20) as

|ψ〉= λ0|000〉+λ
(1)
1
|100〉+λ

(2)
1
|100〉+λ2|101〉+λ3|110〉+λ4|111〉

= |d〉|00〉+ |1〉
(

λ
(2)
1
|00〉+λ2|01〉+λ3|10〉+λ4|11〉

)
(A.43)

whereλ
(1)
1

+λ
(2)
1

= λ1eiϕ and|d〉= λ0|0〉+λ
(1)
1
|1〉.

Now the second term is only a two qubit system where we can use the polar
decomposition (2.2) to diagonalize it:

λ
(2)
1
|00〉+λ2|01〉+λ3|10〉+λ4|11〉= ∑

i j
Ai j |i j 〉=

2

∑
i=1

Bi |ĩ, ĩ〉 (A.44)

with the diagonal matrixB = UAV†.
To realize the second term in the Innsbruck decomposition of eqn. (A.35) we have
to require that eitherB1 = 0 orB2 = 0, i.e.

det(B) = 0 = det(UAV†) = det(U)det(A)det(V†) = det(A) (A.45)
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sinceU andV are unitary matrices. This can be rephrased as

0 = λ
(2)
1

λ4−λ2λ3 ⇔ λ
(2)
1

=
λ2λ3

λ4
(A.46)

which we can fulfill for anyλi (as long asλ4 6= 0 as mentioned above) as we can
always adjust withλ (1)

1
.
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State>bound entangled,seePPTES
State>edge, 28–30, 35–36, 45–48, 54
State>mixed, 12, 53
State>PPT, 14, 25
State>PPTES, 47, 58, 59
State>pure, 9–11
State>Singlet, 35
supported, 51

Theorem>HAHN-BANACH, 32
Trace, 7
Transpose>partial, 7

Unextendible product bases, 27, 58
Unitary transformation>local, 7
UPB,seeUnextendible product bases

Witness,seeEntanglement
Witness>Schmidt-number=SCHMIDT-

number, 55
Witness>tangent, 35, 45
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