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Chapter 1

General aspects

1.1 Introduction

The physics of ultra cold gases is interesting, because

• interaction is characterized by a small parameter, so that systems may be an-
alytically analyzed. Usually phenomenological data and experimental data
has to be fitted while in this case only the scattering length and the massm
are required as input

• many traps (preparations) and manipulations are possible

The title of this lecture contains two words which have to be defined.

Gasesr0 being the size of the neutral particle (range of interparticle interaction)
andn the density, the system is called a gas if

r0� n−
1
3 , (1.1)

i.e. the range of the interparticle interaction is much smaller than the mean
interparticle distance. This implies that the interaction is characterized by a
small parameter (∼ r0n

1
3 ).

Ultra cold Classically there is no scale to which ultra cold could be defined.
Quantum mechanically theDE BROGLIE wavelength

λD ∼
~

p
∼ ~√

mkBT
(1.2)

offers such scale. We call a system ultra cold if

λD & n−
1
3 . (1.3)

At this point quantum degeneracy becomes important.

From now on we will setkB≡ 1.
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8 CHAPTER 1. GENERAL ASPECTS

1.2 Single particle

1.2.1 General aspects

The HAMILTON ian is

Ĥ =− ~
2

2m
4+U(~r) (1.4)

whereU(~r) is the (Trap)potential. The solutions

ϕ
ν

: Ĥϕ
ν

= ε
ν
ϕ

ν
(1.5)

are orthogonal and the set of functionsϕ
ν
(~r) is complete∫

dr ϕ
∗
ν
(r)ϕ

ν
′(r) = δ

νν
′ (1.6)

∑
ν

ϕ
∗
ν
(~r)ϕ

ν
(~r ′) = δ (~r−~r ′). (1.7)

If the particle is free, i.e.U = 0 thenν → p and

ϕp = ei~p·~r
εp =

p2

2m
. (1.8)

1.2.2 Traps

General harmonic trap

U(~r) =
m
2

(ω
2
x x2 + ω

2
y y2 + ω

2
z z2) with solutions (1.9)

ψnxnynz(~r) = ϕnx(x)ϕny(y)ϕnz(z). (1.10)

For each space dimension the wave function is of the form

ϕni
(xi) =

1√
2ni (ni)!

√
π l0

e
− 1

2

(
xi
l0

)2

Hni

(
xi

l0

)
. (1.11)

HereHn are the HERMITE polynomials andl0 =
√

~

mω
.
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Rotationally invariant harmonic trap

U(~r) =
m
2

(ω
2
ρ

ρ
2 + ω

2
z z2) ρ =

√
x2 +y2 (1.12)

This leads to the solution

ψnρ mnz = ϕnρ
(ρ̂)eimφ

ϕnz(ẑ) with (1.13)

ρ̂ =
ρ√
~

mωρ

i ≡ ρ

lρ
ẑ=

z√
~

mωz

i ≡ z
lz

(1.14)

ϕnz =
1√√

n2nznz!lz
e−

ẑ2
2 Hnz(ẑ) (1.15)

ϕnρ
=

1
lρ

√
nρ !

π(nρ + |m|)!
ρ̂
|m|e−

ρ̂
2

2 L|m|nρ

(ρ̂
2) (1.16)

εnρ mnz = ~(ωρ(2nρ + |m|+1)+ ωz(nz+
1
2

)). (1.17)

HereH are the HERMITE polynomials andL the LAGUERREpolynomials.

Isotropic harmonic trap

U(~r) =
mω

2

2
r2 (1.18)

The dimensionless solutions are

ψnlm = ϕnl(~r)Ylm(~r) r̂ =
r√
~

mω

≡ rl0 (1.19)

ϕnl =
1

l
3
2
0

√
2n!

Γ(n+ l + 3
2)

r̂ l e−
r̂2
2 Ll+ 1

2
n (r̂2) (1.20)

εnlm = ~ω(2n+ l +
3
2

). (1.21)

HereΓ is the EULER gamma (generalized faculty) function.

1.3 Many particles

The HAMILTON ian is

Ĥ =
N

∑
i=1

(
− ~

2

2m
4i +U(~r i)

)
+

1
2

N

∑
i 6= j=1

UI(~r i−~r j). (1.22)
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The simplest case is the free gas, whereUI ≡ 0. If we label possible single particle
states withν and if each state is occupied byn

ν
particles than the total number of

particlesN is

∑
ν

n
ν

= N. (1.23)

A simple ansatz for the wave function is a product of single particle wave func-
tions:

Ψn1,n2,...
(~r1,~r2, . . . ,~rn) = ϕi1

(~r1)ϕi2
(~r2) · · ·ϕin

(~rn) (1.24)

εn1,n2,...
= n1ε1 +n2ε2 + . . . (1.25)

This solution satisfies the SCHRÖDINGER equation (1.5) but, in general, it fails
to describe the physics ofN identical particles1, because the wave function must
change in a specific way under permutationsP of any two identical particles.
Since|ψ|2 is an observable which is unaffected by the permutation, this leaves
two possibilities:

Pψ =±ψ (1.26)

1. "+": Bosons
The wave function has to be symmetrized over all possible permutations
which exchange particles in different quantum states. This subset of the
permutation group is denoted byp′:

ψ
(b)
n1,n2,...

=

√
n1!n2! · · ·

N! ∑
p′

ϕ
ν1

(~r1) · · ·ϕ
νn(~rn) (1.27)

2. "−": Fermions
No two single particles may be in the same stateν . Therefore the sum runs
over all possible permutations:

ψ
(f)
n1,n2,...

=
1√
N!

∑
p

(−)p
ϕ

ν1
(~r1) · · ·ϕ

νn(~rn) (1.28)

Alternatively the wave function can be described by a determinant:

ψ
(f)
n1,n2,...

=
1√
N!

∣∣∣∣∣∣∣∣∣


ϕ

ν1
(~r1) ϕ

ν1
(~r2) . . . ϕ

ν1
(~rn)

ϕ
ν2

(~r1) ϕ
ν2

(~r2) . . . ϕ
ν2

(~rn)
...

...
...

...
ϕ

νn(~r1) ϕ
νn(~r2) . . . ϕ

νn(~rn)


∣∣∣∣∣∣∣∣∣ (1.29)

1i.e. no further quantum numbers like color is present
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A general wave function can be written as a linear combination of the above func-
tions

ψ
(b,f)(

{
~r i

}
) = ∑
{pi}

C{pi}
ψ

(b,f)
{pi}

(
{

r i

}
). (1.30)

Only the occupationsni of each single particle state are required. With this infor-
mation the wave function can be reconstructed. Therefore, a simplified description
can be expected if the change fromr i representation toni representation is made.

1.4 Basics of second quantization

We have statesν1, ν2, . . . with n1, n2, . . . particles. Each state is described by
|n1,n2, . . .〉with the special state vacuum|0,0, . . .〉 ≡ |0〉. The following operators
are relevant to these states:

• a
ν

is the annihilation operator:n
ν
→ n

ν
−1

(Note thata
ν
|0〉= 0 for anyν)

• a†
ν

is the creation operator:n
ν
→ n

ν
+1

Note that these operators annihilate or create particlesin a given quantum state
unlike the operators in first quantization which change the quantum number of
one quantum state.
As was already mentioned above, there are two types of particles.

1.4.1 Bosons

In this case we have the following commutation relations:[
a

ν
,a†

ν
′

]
= δ

νν
′ (1.31)[

a
ν
,a

ν
′
]

=
[
a†

ν
,a†

ν
′

]
= 0 (1.32)

Because states with differentν are independent, we consider only one state to
understand the consequences of the above generator algebras.
The actions of the operators on the states are as follows:

a|0〉= 0
(
a†
)n
|0〉= αn|n〉 (1.33)

〈0|an = 〈n|αn

(
a†
)n−1

|0〉= αn−1|n−1〉 (1.34)
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All states are orthonormal, i.e.〈n|m〉= δnm. Theαn can be chosen real, as a phase
can be absorbed into the definition of the states. It follows

α
2
1 = 1 and (1.35)

α
2
n = 〈0|an

(
a†
)n
|0〉= 〈0|an−1

(
1+a†a

)(
a†
)n−1

|0〉 (1.36)

= α
2
n−1 + 〈0|an−1a†a

(
a†
)n−1

|0〉 (1.37)

= α
2
n−1 + 〈0|an−1a†

(
1+a†a

)(
a†
)n−1

|0〉 (1.38)

= 2α
2
n−1 + 〈0|an−1

(
a†
)2

a
(
a†
)n−2

|0〉 (1.39)

= nα
2
n−1 + 〈0|an−1

(
a†
)n

a|0〉︸︷︷︸
=0

(1.40)

= n!. (1.41)

Therefore each state can be written as

|n〉=
1√
n!

(
a†
)n
|0〉 and (1.42)

a†|n〉=
1√
n!

a†(a†)n|0〉=
1√
n!

√
(n+1)!|n+1〉 (1.43)

=
√

n+1|n+1〉. (1.44)

Analogously we calculate

a|n〉=
1√
n!

a
(
a†
)n
|0〉=

1√
n!

(1+a†a)
(
a†
)n−1

|0〉 (1.45)

=
1√
n!

{√
(n−1)!|n−1〉+a†a

(
a†
)n−1

|0〉
}

(1.46)

=
1√
n!

{√
(n−1)!|n−1〉+a†(1+a†a)

(
a†
)n−2

|0〉
}

(1.47)

=
1√
n!

{
2
√

(n−1)!|n−1〉+
(
a†
)2

a
(
a†
)n−2

|0〉
}

(1.48)

=
1√
n!

n
√

(n−1)!|n−1〉=
√

n|n−1〉. (1.49)

Defining the particle number operator ˆn = a†a we get

n̂|n〉= a†a|n〉= a†√n|n−1〉=
√

n
√

n|n〉= n|n〉, (1.50)

and the energy operator is thereforeεn = εa†a.
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1.4.2 Fermions

The operatorsa
ν

anda†
ν

obey anticommutation relations

{a
ν
,a†

ν
′}= δ

νν
′ (1.51)

{a
ν
,a

ν
′}= {a†

ν
,a†

ν
′}= 0 PAULI Principle. (1.52)

Again, considering for simplicity the one state problem, it is easy to see that the
occupation numberN can only be 0 (the vacuum state) or 1 (PAULI principle):

a|0〉= 0 a|1〉= |0〉 a†|0〉= |1〉 with (1.53)

Ĥ = εa†a n̂ = a†a (1.54)

1.4.3 Single particle operator

We can now define the field operators as

ψ̂(~r) = ∑
ν

a
ν
ϕ

ν
(~r) (1.55)

ψ̂
†(~r) = ∑

ν

a†
ν
ϕ
∗
ν
(~r). (1.56)

Hereν runs over all states and theϕ
ν
(~r) are the amplitudes (probabilities) at~r

for a particle to be in the stateν . They have the following (anti-)commutation
relations: [

ψ̂(~r), ψ̂†(~r ′)
]
±

= ∑
νν
′
ϕ

ν
(~r)ϕ

∗
ν
′(~r ′)

[
a

ν
,a†

ν
′

]
±

(1.57)

= ∑
ν

ϕ
ν
(~r)ϕ

∗
ν
(~r ′) = δ (~r−~r ′) (1.58)[

ψ̂(~r), ψ̂(~r ′)
]
± =

[
ψ̂

†(~r), ψ̂†(~r ′)
]
±

= 0 (1.59)

By using the field operatorŝψ(~r) and ψ̂
†(~r) various quantum mechanical oper-

ators can easily be transformed from the space representation (~r-representation)
into the occupation number representation (n-representation).
For aSingle particle operator

F̂1 =
N

∑
i=1

f (~r i) (1.60)

(Examples:

n(~r) = ∑
i

δ (~r−~r i) density (1.61)

Ĥ1 = ∑
i

{
− ~

2

2m
4i +U(~r i)

}
Single particle HAMILTON ian) (1.62)
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we have

F̂1 =
∫

d3r ψ̂
†(~r) f (~r)ψ̂(~r) = ∑

νν
′
〈ν ′| f |ν〉a†

ν
′aν

(1.63)

〈ν ′| f |ν〉=
∫

d3r ′ϕ†
ν
′(~r ′) f (~r)ϕ

ν
(~r ′). (1.64)

Each term in the sum on the r.h.s. of eq. (1.63) describes the transition of a particle
from a stateν to a stateν ′ with amplitude〈ν ′| f |ν〉.
Examples:

n̂(~r) = ψ̂
†(~r)ψ̂(~r) (1.65)

N̂ = ∑
ν

a†
ν
a

ν
(1.66)

Ĥ1 =
∫

d3r

(
∑
ν
′
a†

ν
′ϕ
∗
ν
′(~r)

){
− ~

2

2m
4+U(~r)

}(
∑
ν

a
ν
ϕ

ν
(~r)
)

(1.67)

=
∫

d3r

(
∑
ν
′
a†

ν
′ϕ
∗
ν
′(~r)

)(
∑
ν

a
ν
ε

ν
ϕ

ν
(~r)
)

(1.68)

= ∑
ν

ε
ν
a†

ν
a

ν
with

∫
d3r ϕ

∗
ν
′(~r)ϕ

ν
(~r) = δ

νν
′ (1.69)

1.4.4 Two particle operator

F̂i = ∑
j 6=k

f (~r j ,~rk) (1.70)

Example:

Ĥint =
1
2 ∑

i 6= j

UI(~r i−~r j) (1.71)

Now we have

F̂2 =
∫

d3rd3r ′ ψ̂†(~r)ψ̂
†(~r ′) f (~r,~r ′)ψ̂(~r ′)ψ̂(~r) (1.72)

and the the interaction part of the HAMILTON ian as example:

Ĥint =
1
2 ∑

ν1,ν2,ν
′
1,ν
′
2

〈ν ′1ν
′
2|UI|ν1ν2〉a

†
ν
′
1
a†

ν
′
2
a

ν2
a

ν1
with (1.73)

〈ν ′1ν
′
2|UI|ν2ν1〉=

∫
d3rd3r ′ϕ∗

ν
′
1
(~r)ϕ

∗
ν
′
2
(~r ′)UI(~r−~r

′)ϕ
ν2

(~r ′)ϕ
ν1

(~r) (1.74)
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Figure 1.1: Interchange of quantum state

This term describes the scattering of two particles in initial statesν1 andν2 into
final statesν ′1 andν

′
2 with an amplitude〈ν ′1ν

′
2|UI|ν2ν1〉.

We can now write down the complete HAMILTON operator in the form:

Ĥ = ∑
ν

ε
ν
a†

ν
a

ν
+

1
2 ∑

ν1,ν2,ν
′
1,ν
′
2

〈ν ′1ν
′
2|UI|ν2ν1〉a

†
ν
′
1
a†

ν
′
2
a

ν2
a

ν1
with (1.75)

N̂ = ∑
ν

a†
ν
a

ν
(1.76)

The constraint of fixedN introduces technical difficulties. To avoid them, we
introduce the chemical potentialµ

Ĥ→ Ĥ−µN̂ (1.77)

and keep a fixed ¯n. The system can be thought as connected with a reservoir and
the chemical potential governs the exchange process. In our calculations we have
to replace

ε
ν
→ ε

ν
−µ (1.78)

to take this extra term into account.
If we consider the homogeneous case thenν becomes~p and

ϕ
ν

= ei ~p·~r
~ ∑

ν

→ V
∫

d3p
(2π~)3 (1.79)

ε
ν

=
p2

2m
〈ϕ

ν
|ϕ

ν
′〉 → (2π~)3

δ (~p−~p′). (1.80)

For the time being we set the volumeV ≡ 1. Since we consider the homogeneous
case~p is conserved therefore

〈~p1
′~p2
′|UI|~p1~p2〉= (2π~)3

δ (~p1 +~p2−~p1
′−~p2

′)g. (1.81)
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To calculateg we have to switch carefully to the center of mass reference system
and use relative coordinates. Theng turns out to be the FOURIER transform of
UI(~r):

g =
∫

d3rUI(~r)e
i(~p1−~p2)~r

~ . (1.82)

But quantum degenerate cold gases, eqn. (1.1)-(1.3), imply collisions of particles
with low momenta (i.e. slow particles,r0p� ~). From scattering theory we
know that in this regime collisions are characterized by only one parameter, the
scattering lengtha. Therefore, in the BORN approximation,

g =
4π~

2

m
a. (1.83)

As a result, the HAMILTON ian takes the form

Ĥ = ∑
~p

(
ε~p−µ

)
a†

pap +
1
2

g ∑
p1,p2,p

′
1,p
′
2

a†
p′1

a†
p′2

ap2
ap1

. (1.84)

Figure 1.2: Plot of inter atomic potential



Chapter 2

Bosons

2.1 Free Bose gas

2.1.1 General properties

For a free BOSEgas the HAMILTON ian is

Ĥ = ∑
~p

(ε~p−µ)a†
pap. (2.1)

At high temperature we have classical behavior; we consider only ultra cold gases
for which

~√
2mTQ

∼ n−
1
3  TQ∼

~
2

m
n

2
3 , (2.2)

whereTQ is the quantum degeneracy temperature. With this HAMILTON ian at
T ↘ 0 the ground state is identical to the product of the single particle ground
states and the fixed average density1 is given by

n̄ = 〈∑
p

a†
pap〉= 〈∑

p
np〉= ∑

p

1

exp( εp−µ

T )−1
(2.3)

=
∫

d3p
(2π~)3

1

exp( εp−µ

T )−1
. (2.4)

This equation definesµ; two properties can be derived from it:

1. µ ≤ ε0 = 0 becausen must be positive
1Note that we take the quantum mechanical as well as the statistical average

17
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2. The density of states at energyε is

ν(ε) = ∑
~p

δ (ε− εp) =
∫

d3p
(2π~)3 δ

(
ε− ~p2

2m

)
(2.5)

= 4π

1
(2π~)3

∫ ∞

0
dp p2

δ

(
ε− p2

2m

)
(2.6)

=

(√
2m

2π~

)3

4π

∫ ∞

0
dx
√

xδ (ε−x)∼
√

ε
T↘0−−→ 0. (2.7)

Obviously the ground state is not counted properly.

Analyzing the occupation of each state

np =
1

exp
(

(εp+|µ|)
T

)
−1

(2.8)

we can distinguish two cases:

1. At a given~p andµ

T ↓ : np ↓ (2.9)

2. At a given~p andT

|µ| ↓ : np ↑ (2.10)

Therefore, to keep the average density fixed, we have to decrease the modulus of
the chemical potential with decreasing temperature:

T ↓⇒ |µ| ↓ (2.11)

But µ ≥ 0 hence we can defineTC to be the temperature whereµ = 0:

n̄ =
∫

d3p
(2π~)3

1

exp
(

p2

2mTC

)
−1

x2 =
p2

2mTC
(2.12)

= (2mTC)
3
2

4π

(2π~)3

∫ ∞

0
dx

x2

ex2−1
(2.13)

= (2mTC)
3
2

1
2π

2
~

3

∫
dxx2e−x2 1

1−e−x2 (2.14)

= (2mTC)
3
2

1
2π

2
~

3

√
π

4
ξ

(
3
2

)
=
(

mTC

2π~
2

) 3
2

ξ

(
3
2

)
(2.15)
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Here we have used
∞∫

0

dxx2e−x2
∞

∑
n=0

e−nx2
=
∫

dxx2
∞

∑
n=1

e−nx2
(2.16)

=
∞

∑
n=1

1

n
3
2

∞∫
0

dyy2e−y2
= ξ

(
3
2

)
1
4

√
π (2.17)

∫ ∞

0
dye−αy2

=
1
2

√
π

α

(2.18)∫ ∞

0
dyy2e−αy2

=− ∂

∂α

∫ ∞

0
dye−αy2

. (2.19)

Therefore the critical temperature is

TC = (2π)
[

ξ

(
3
2

)]− 3
2 ~

2

m
n̄

2
3 = 3.31

~
2

m
n̄

2
3 . (2.20)

For T < TC we can now rewrite

n̄ = n0(T)+
∫

d3p
(2π~)3

1

exp
(

εp
T

)
−1

(2.21)

= n0(T)+
∫

d3p
(2π~)3

1

exp
(

p2

2mTC

TC
T

)
−1

(2.22)

= n0(T)+
(

T
TC

) 3
2
∫

d3p
(2π~)3

1

exp
(

p2

2mTC

)
−1︸ ︷︷ ︸

n̄

(2.23)

n0(T) = n

[
1−
(

T
TC

) 3
2
]

(2.24)

np = n0(2π~)3
δ (~p)+

1

exp
(

p2

2mTC

)
−1︸ ︷︷ ︸

≈ 1
p2�δ (~p)

. (2.25)

This means, we have a macroscopic occupation of the ground state, i.e. BOSE-
EINSTEIN condensation (BEC).
Further properties:

E = ∑
p

p2

2m
np∼ T

5
2 (2.26)
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ForT = 0 all particles are in the ground state withε0 = 0. Butµ = 0 also therefore
the energyE0 of the system is independent of the number of particle and hence
unphysical particle number fluctuations are expected. Further

Ĥ = ∑
p

(εp−µ)a†
pap

T<TC−−−→∑
p

p2

2m
a†

pap (2.27)

~P = ∑
p
~pa†

pap. (2.28)

This means that the excitations are identified with particles.

2.1.2 Superfluidity in Free Bose Gas condensate

Dissipation means creations of excitations with momentum~p opposite to the gas
velocity due to the interaction of the gas with wall. These excitations decrease
the momentum of the gas and and stops it after some time. If the medium is
superfluid, no such excitations occur. AtT ≡ 0 no thermal excitations are present,
only interactions with the walls are relevant. To find out if those excitations occur,
we have check, whetherEbefore> Eafter. To describe the situation we have to look
at two different frames of reference:

Figure 2.1: Frames of reference

Before k′ : E′= E0, ~P′= 0 (no excitations, all particles in ground state with~p= 0)
k : E = E0 + 1

2MV2

After E′ = E0 + εp, ~P′ = ~p1 (small)
E = E0 + 1

2MV2 + εp +~p·~V
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Obviously the total energy decreases (dissipation occurs) if~p ↓↑~V, i.e.

εp− pV ≤ 0 ⇔ εp≤ pV. (2.29)

This is possible forV ≤VC with

Vc = min
p

εp

p
= min

p

p
m

= 0. (2.30)

For the free BOSE gas dissipation of a flow atT = 0 occurs for arbitrary small
velocities.

2.1.3 BEC in lower dimensions

In 2D

d3p
(2π~)3 →

d2p
(2π~)2 (2.31)

n =
∫

d2p
(2π~)2

1

exp
(

εp
T

)
−1

. (2.32)

This expression diverges atp↘ 0 as1
p thereforeµ 6= 0 always. BEC occurs only

atT = 0, when all particles are in the ground state, i.e.TC = 0.

In 1D no BEC occurs (even atT = 0).

However superfluidity in 2D is possible (if we switch on interaction, see below).
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2.2 Trapped Bose gas

2.2.1 Box

In a box withV = L3, N particles and infinite potential at the walls the wave
function of one particle is of the form

ψ(~r) =
(

2
L

) 3
2

sin(
π

L
nxx)sin(

π

L
nyy)sin(

π

L
nzz) (2.33)

ε~n =
~

2

2m

(
π

L

)2
(n2

x +n2
y +n2

z) pi =
π

L
ni (2.34)

ε0 =
3
2
~

2
π

2

mL2 ε1 =
6
2
~

2
π

2

mL2 ∼ TCN−
2
3 (2.35)

TC = 3.31
~

2

m

(
N
L3

) 2
3

= 3.31
~

2N
2
3

mL2  ε0∼ TCN−
2
3 > 0 (2.36)

N = ∑
~n

1

exp
(

ε~n−µ

T

)
−1

. (2.37)

SinceN has to remain finite even forT → 0, εn− µ ∼ T has to hold (at least for
low T). To look at this we assume that

ε0−µ � ε1− ε0 (2.38)

εn−µ = εn− ε0 + ε0−µ︸ ︷︷ ︸
≈0

≈ εn− ε0. (2.39)

Using this assumption we get

N≈ 1

exp
(

ε0−µ

T

)
−1

+∑
n

′ 1

exp
(

εn−ε0
T

)
−1

(2.40)

=
1

exp
(

ε0−µ

T

)
−1

+
∫

d3n
1

exp
(

εn−ε0
T

)
−1

(2.41)

≈ 1

exp
(

ε0−µ

T

)
−1

+
V

(2π~)3

∫
d3p

1

exp
(

p2

2mT

)
−1

(2.42)

=
1

exp
(

ε0−µ

T

)
−1

+V n

(
T
TC

) 3
2

N = V n. (2.43)
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In (2.41) we substituted4nx = 1⇒4px = ~π

L with

∫
dnxdnydnz =

(
L

π~

)3∫
p>0

d3p =
V

(2π~)3

∫
p
d3p. (2.44)

In (2.42) we note, that only terms withp� ε0 are important. From (2.43) we get

1

exp
(

ε0−µ

T

)
−1

= N

[
1−
(

T
TC

) 3
2
]

= N0 (2.45)

⇔ ε0−µ = T ln

1+
1

N

[
1−
(

T
TC

) 3
2
]
 (2.46)

=
T
N

1[
1−
(

T
TC

) 3
2
] (2.47)

which is macroscopically small forT� TC. This justifies our assumption above2.
For the number of particles in the first excited state we get atε1− ε0� T� TC

N1 =
1

exp
(

ε1−µ

T

)
−1
≈ 1

exp
(

ε1−ε0
T

)
−1
≈ T

ε1− ε0
(2.48)

∼ T
TC

N
2
3 � 1 but (2.49)

N1

N0
∼ N−

1
3

T
TC

N1� N0. (2.50)

Therefore the occupation of the ground state is macroscopically larger than that
of any other state.

2.2.2 Parabolic trap

In an isotropic parabolic trap withN particles and oscillator frequencyω the en-
ergy is

ε~n = ~ω

(
nx +ny +nz+

3
2

)
ε0 =

3
2
~ω. (2.51)

2actually it only shows that our assumption is self consistent
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The same arguments as in 2.2.1 hold true thatµ → ε0 for T↘ 0. Redefining

µ̃ = µ− ε0 = µ− 3
2
~ω µ̃ ↘ 0 for T↘ 0 (2.52)

nx =
TC

~ω

n′x (2.53)

we get

N = ∑
~n

1

exp
(
ε~n−µ

)
−1

(2.54)

≈
∫

dnxdnydnz
1

exp
(
~ω

TC
(nx +ny +nz)

)
−1

for T↘ 0 (2.55)

=
(

TC

~ω

)3∫
d3n′

1
exp(n′x +n′y +n′z)−1

(2.56)

=
(

TC

~ω

)3 ∞

∑
n=1

∫
d3n′e−n(n′x+n′y+n′z) (2.57)

=
(

TC

~ω

)3 ∞

∑
n=1

∫
dn′xe−nn′x

∫
dn′ye−nn′y

∫
dn′ze−nn′z (2.58)

=
(

TC

~ω

)3 ∞

∑
n=1

1
n3 =

(
TC

~ω

)3

ξ (3). (2.59)

Solving this for the critical temperature we get

TC = ~ωN
1
3 ξ (3)−

1
3 = 0.94N

1
3~ω � ~ω. (2.60)

Quantitatively the critical temperature for a trapped gas can be obtained from the
same type of arguments as in the homogeneous case:

λD ∼
~√
mT
∼ n̄−

1
3 (2.61)

Since for a classical oscillator potential and kinetic energy have the same magni-
tude and the latter is related via (1.2) to temperature we can estimate the size of
the cloud as

mω
2R2

2
∼ T

2
⇒ R∼ 1

ω

√
T
m

(2.62)

 n̄ =
N
R3 ⇒ TC∼ ~ωN

1
3 . (2.63)
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2.3 Weakly interacting Bose gas

If we consider a unit volume atT = 0 the HAMILTON ian reads

Ĥ = ∑
p

εpa
†
pap +

1
2

g ∑
~p1+~p2=~p3+~p4

a†
p3

a†
p4

ap2
ap1

. (2.64)

Sinceεp−ε0≈ 0 we cannot apply perturbation theory because we cannot guaran-
teeg< εp−ε0. Explicit calculation show divergent terms already in second order.
Our solution will also show the invalidity of perturbation theory (cf. (2.111)).
We note that almost all particles are in the ground state, i.e.

a†
pap� n0 ∀p 6= 0 (2.65)

a†
0a0 = n0� 1 (2.66)

a0a
†
0 = 1+n0︸ ︷︷ ︸

≈n0

� 1. (2.67)

This leads to the simplificationa0,a
†
0≈
√

n0� 1. Taking leading terms inn0, we
can write (2.64) in the form

Ĥ = ∑
p

εpa
†
pap +

1
2

gn2
0 +

1
2

gn0 ∑
~p6=0

{
apa−p +a†

−pa
†
p +4a†

pap

}
. (2.68)

The remaining momenta have to be equal in the last sum because of conservation
of total momentum.
Remembering that

n0 = n−∑
p

np (2.69)

we can rewrite (2.68) with the considered accuracy as

Ĥ =
1
2

gn2 + ∑
p6=0

εpa
†
pap +

1
2

gn ∑
~p6=0

{
2a†

pap +a†
−pa

†
p +apa−p

}
(2.70)

!= E0 + ∑
p6=0

ωpã
†
pãp (2.71)

which is a HAMILTON operator for quasi particles in a harmonic potential. To find
the relation between these quasi-particles and our original (or base) operators we
assume according to BOGOLYUBOV

ãp = upap +vpa
†
−p u∗p = up up = u−p (2.72)

ã†
p = upa

†
p +vpa−p v∗p = vp vp = v−p (2.73)
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and require them to obey the BOSEcommutators:[
ãp, ãp′

]
=
[
ã†

p, ã
†
p′

]
= 0

[
ãp, ã

†
p′

]
= δpp′ (2.74)

Using this we get[
ãp, ã

†
p′

]
= upup′

[
ap,a

†
p′

]
︸ ︷︷ ︸

δ
pp′

+upvp′

[
ap,a−p′

]
︸ ︷︷ ︸

0

+vpvp′

[
a†
−p,a

†
p′

]
︸ ︷︷ ︸

0

+vpvp′

[
a†
−p,a−p′

]
︸ ︷︷ ︸
−δ

pp′

(2.75)

= δpp′(u
2
p−v2

p) ⇒ u2
p−v2

p = 1. (2.76)

This equation is solved if we set

up = cosh(φp) vp = sinh(φp). (2.77)

The inverse relations are then given by

ap = upãp−vpã
†
−p (2.78)

a†
p = upã

†
p−vpã−p. (2.79)

If we now defineε̃p = εp+gnand insert (2.78) and (2.79) into the HAMILTON ian
(2.70) we get

Ĥ =
1
2

gn2 + ∑
p6=0

{
ε̃pa

†
pap +

1
2

gn
(
a†

pa
†
−p +a−pap

)}
(2.80)

=
1
2

gn2 + ∑
p6=0

{
ε̃p

[
u2

pã
†
pãp +v2

pã−pã
†
−p−upvp

(
ã†

pã
†
−p + ã−pãp

)]
+

1
2

gn
[
u2

pã
†
pã

†
−p +v2

pã−pãp−vpup

(
ã†

pãp + ã−pã
†
−p

)
+upã−pãp +v2

pã
†
pã

†
−p−upvp

(
ã†

pãp + ã−pã
†
−p

)]}
(2.81)

=
1
2

gn2 + ∑
p6=0

{
ε̃pv2

p−gnvpup
}

︸ ︷︷ ︸
E0

+ ∑
p6=0

ã†
pãp

[
ε̃p
(
u2

p +v2
p

)
−2gnupvp

]
+ ∑

p6=0

(
ã†

pã
†
−p + ã−pãp

)[
−ε̃pupvp +

1
2

gn(u2
p +v2

p)︸ ︷︷ ︸
=0

]
. (2.82)
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Thusφp has to be chosen such that

gn(u2
p +v2

p)−2ε̃pupvp = 0. (2.83)

The simples way to find the angleφ from this equation is to use the relation

4u2
pv2

p = (u2
p +v2

p)2− (u2
p−v2

p︸ ︷︷ ︸
=1

)2. (2.84)

We get as the result

u2
p =

1
2

[
ε̃p

ωp
+1

]
v2

p =
1
2

[
ε̃p

ωp
−1

]
(2.85)

ω
2
p = ε̃

2
p− (gn)2

ε̃p = εp +gn (2.86)

with the HAMILTON ian

Ĥ =
1
2

gn2 +
1
2 ∑

p6=0

(ωp− ε̃p)+ ∑
p6=0

ωpã
†
pãp with (2.87)

ω
2
p = ε̃

2
p− (gn)2 = (ε̃p−gn)(ε̃p +gn) = εp(εp +2gn) (2.88)

=
p2

2m

(
p2

2m
+2gn

)
. (2.89)

For p→ 0 we haveω ∼ p.

Figure 2.2:ωp as function ofp

More precisely, if we define3

p2
c = mgn v2 =

gn
m

(2.90)

3In this context we assumen≈ n0
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we get

ωp =

{
vp p� pc
p2

2m +gn p� pc.
(2.91)

Reconsidering the requirement for superfluidity (2.30) we get

vc = min
p

(
ωp

p

)
= v 6= 0. (2.92)

If p� pc i.e.

ωp =
pc

m
p for p� pc (2.93)

we get

ωp− ε̃p =
ω

2
p− ε̃

2
p

ωp + ε̃p
=−

(gn0)2

ωp + ε̃p
≈


(gn0)2

gn0
= gn0 p≤ pc

(gn0)2

2εp
= (gn0)2 m

p2 p≥ pc

(2.94)

E0 =
1
2

gn2
0−

1
2

(gn0)2∑
p

m
p2 −

1
2∑

p

{
(gn0)2

ωp + ε̃p
−
(
gn0

)2 m
p2

}
(2.95)

=
1
2

n2
0

{
g−g2∑

p

m
p2

}
︸ ︷︷ ︸

independent ofn

−
(gn0)2

2 ∑
p

{
1

ωp + ε̃p
− m

p2

}
(2.96)

=
1
2

n2
0Γ−

(gn0)2

2 ∑
p

{
1

ωp + ε̃p
− m

p2

}
. (2.97)

HereΓ is the quantum mechanical scattering amplitude defined by

Γ = g−g∑
p

m
p2Γ and (2.98)

Γ =
4π~

2

m
a. (2.99)

The solution is solved iteratively:

Γ = g−g2∑
p

m
p2 + . . . (2.100)
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The sum (2.97) is convergent with the dominant contribution coming fromp≤ pc.
Looking at each term ofE0 we get

∑
p≤pc

1
ωp + ε̃p

≈
∫

dp3

(2π~)3

1
ωp + εp

≈ 1
~

3

∫
p≤pc

d3p
1

gn0
∼ p3

c

gn0~
3 (2.101)

=
mpc

~
3 (2.102)

∑
p≤pc

m
p2 ∼

m
~

3

∫
p/pc

d3p
p2 ∼

mpc

~
3 . (2.103)

Using this the second term of (2.97) forE0 can be estimated (up to some numerical
constantC resp.C̃, c.f. (2.106)) as

E0∼
2π~

2

m
an2

0−C
1
2

(gn0)2mpc

~
3 (2.104)

=
2π~

2an2
0

m

(
1−C̃

√
a3n0

)
. (2.105)

Here
√

a3n0 is our old small parameter (cf. (1.1) witha∼ r0).
The exact calculation leads to

E0 =
2π~

2

m
an2

[
1+

128
15

√
a3n
π

]
. (2.106)

Note, that the equation containsn, notn0.
Lastly the number of particles outside the condensate (i.e.p 6= 0) in the ground
state considering̃ap|0〉= 0 is

〈∑
p6=0

a†
pap〉= ∑

p6=0

v2
p =

1
2 ∑

p6=0

ε̃p−ωp

ωp
=

1
2 ∑

p6=0

ε̃
2
p−ω

2
p

ωp(ε̃p + ωp)
(2.107)

=
(gn)2

2 ∑
p6=0

1
ωp(ε̃p + ωp)

≈ (gn)2

2 ∑
p/pc

1
vpgn

(2.108)

≈ gn
1
v

p3
c

(2π~)3

1
pc
≈ gn

1
v

p2
c

~
3 ∼ n

√
na3 with (2.109)

g =
4π~

2a
m

. (2.110)

This result (∼ a
3
2 is not possible by perturbation because in perturbation only

integer powers of the interaction constant are possible).
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By exact calculations we get

〈∑a†
pap〉=

8
3

n

√
na3

π

= n′� n with (2.111)

a∼ r0� n−
1
3 . (2.112)

Using the definition ofg (1.83) we calculate the chemical potential in leading
order using (2.105) or (2.106)

µ =
∂E0

∂n
≈

∂E0

∂n0
= gn0≈ ng> 0 (2.113)

because (cf. (2.69))

n0 = n

(
1− 8

3

√
na3

π

)
≈ n. (2.114)

This is valid for the ground state atT = 0 and no excitations present.

Figure 2.3: Energy spectra in BOSEcondensates. If in the free caseε−µ would
become zero ¯n (2.4) cannot be fixed. If a repulsive interaction is present, the
average number of particles can be fixed becauseEint ∼ an2

2.4 Mean field approximation

Again we note, that

apa
†
p→ np +1� 1 and (2.115)

a†
pap→ np� 1. (2.116)
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If we are interested only in quantities proportional ton, we can neglect[ap,a
†
p] =

1. Our theory then becomes a classical field description:

ψ̂(~r)→ ψ(r) =
√

n(r)eiΦ(r) with (2.117)

ψ
†
ψ = n(r). (2.118)

This works only if the classical field is slowly varying or by using FOURIERtrans-
formation the momenta are small (slow motion). The reason behind this is, thatn
andΦ behave similar top andx in ordinary space. The wave function can always
be multiplied with a phase without changing the physics:

ψ
ν
(~r)→ eiφ

ψ
ν
(~r) single particle (2.119)

Ψ(~r1, . . . ,~rN)→ eiNφ Ψ(~r1, . . . ,~rN) (2.120)

This implies the operatorŝN =−i ∂

∂φ
andφ̂ = φ which leads to[

φ̂ , N̂
]

= i ⇒ 4N4φ ≥ 1. (2.121)

But in a sufficiently large volume∆V one may have∆N� 1 (but still ∆N
N̄ � 1).

Therefor, it follows from (2.121), that in this case∆φ � 1. As a result, for such a
volumeN̄ andφ̄ are well defined quantities. By dividing our system into blocks
with volume∆V , we can definēN andφ̄ for each block and these quantities vary
slowly from block to block.
If we consider the thermodynamic limit, i.e.N→∞ while N

V remains fixed we get

〈N−1|ψ̂(~r)|N〉= ψ(~r) and− i~
∂

∂ t
ψ̂ = [Ĥ, ψ̂] (2.122)

⇒ −i~
∂

∂ t
ψ = lim

...
〈N−1|(Ĥψ̂− ψ̂Ĥ)|N〉 (2.123)

= lim
...
〈N−1|(E(N−1)ψ̂− ψ̂E(N))|N〉 (2.124)

= lim
...

(E(N−1)−E(N)︸ ︷︷ ︸
=:−µ

)〈N−1|ψ̂|N〉 (2.125)

=−µψ. (2.126)

This differential equation can be solved by

ψ(~r, t) = e−i µt
~ ψ(~r). (2.127)

If we replaceĤ by Ĥ ′ = Ĥ−µ we absorb this trivial phase in our HAMILTON ian.



32 CHAPTER 2. BOSONS

This leads to4 the GROSS-PITAJEWSKI equation (GP):

i~
∂

∂ t
ψ =− ~

2

2m
4ψ +(g|ψ|2−µ)ψ (2.128)

Here|ψ|2 = n≈ n0. Therefore we will not distinguish betweenn andn0.
If we are looking for a stationary, homogeneous solution, then all derivatives (in
GP) become zero and ifψ 6= 0 we find

µ = gn. (2.129)

Setting the possible phase to 0, we can describe small fluctuations around the
ground state by a wave function

ψ =√n0 + δψ(~r, t). (2.130)

Substituting this wave function into the GP (2.128), taking only terms up to linear
order inδψ and using (2.129) we get

i~
∂

∂ t
δψ =− ~

2

2m
4δψ +gn0(δψ + δψ

∗) . (2.131)

To solve this, we make the ansatz

δψ(~r, t) = Aexp(i(
~p·~r
~

−ωt))+B∗exp(−i(
~p·~r
~

−ωt)) (2.132)

and insert it into (2.131):

~ωA = (εp +gn0)A+gn0B (2.133)

−~ωB∗ = (εp +gn0)B∗+gn0A∗ (2.134)

Solving this forω we getωp =
√

ε̃
2
p− (gn0)2 andε̃p = εp +gn0 again.

Calculating the expectation value and remembering (2.129) we get a functional
for ψ:

E{ψ}=
∫

d3r

(
~

2

2m
|∇ψ|2 +

1
2

g|ψ|4−µ|ψ|2
)

(2.135)

=
∫

d3r

(
~

2

2m
|∇ψ|2 +

1
2

g
(
|ψ|2−n0

)2− 1
2

gn2
0

)
(2.136)

Since the functional does not depend on aspace independentΦ, i.e. E{ψ} =
E{eiΦ

ψ} we can choose a phase. For the previous calculationsΦ = 0. Once the
phase is chosen, the symmetry is broken, because

ψ0 6= eiΦ
ψ0 (2.137)

If Φ is a slowly varying function, then the functional will not change much.
4not shown here
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Theorem 1 (Goldstone) If a global continuous symmetry is spontaneously bro-
ken (the ground state is not invariant under symmetry operations) then there exists

a soft mode, i.e. aωp with ωp
p→0−−→ 0.

We have such a situation. Ifp→ 0 thenεp→ 0 and thereforeωp→ 0. This leads
(2.131) toB =−A and a purely imaginary change in the phase:

δψ = Aei()−A∗e−i() (2.138)

= iε
√

n0Φ(~r, t) and (2.130) becomes (2.139)

ψ(~r, t) =√n0 + iε
√

n0Φ(~r, t)≈√n0eiεΦ (2.140)

If we substitute this solution into the definition of the probability flow (=superfluid
flow) we get

~j = n~vs =− i~
2m

(ψ
∗(∇ψ)− (∇ψ

∗)ψ) (2.141)

= n
~

m
∇Φ with ψ(~r, t) =

√
n(~r, t)eiΦ(~r,t). (2.142)

Here~vs is the velocity of the superfluid flow. It is a potential flow:

~vs =
~

m
~∇Φ (2.143)

therefore the rotation∇×~vs = 0. If we compare this to solid body rotation with

~vSB = ~Ω×~r we get (2.144)

∇×~vSB = 2~Ω 6= 0. (2.145)

Therefore the fluid must stay at rest even if the vessel is rotated.
On the other hand

Erot = E−
(
~M ·~Ω

)
(2.146)

and thus rotation must occur (M becomes nonzero) ifΩ is large enough.
To solve this we keep∇×~vs = 0 everywhere except for a line where

ψ|line = 0. (2.147)

Calculating∮
~vs · ~dl = const= 2πΓ =

~

m

∮
∇Φd~l =

~

m
δΦ =

~

m
2π k. (2.148)
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Figure 2.4: Top view on rotating superfluid liquid

HereΓ is the vorticity or circulation andk ∈ Z the circulation quantum number.
With~vs∼~eφ

and~dl =~e
φ
r dφ we get for the critical velocity

vs =
~

m
k
r
. (2.149)

This expression becomes infinite forr→ 0 (while being nice forr→∞) therefore
superfluidity has to break down at some distancer ∼ ξ with

vs = vc =
pc

m
=

1
m
√

mgn0 =
√

gn0

m
. (2.150)

For k = 1 we get

ξ ∼ ~

mvc
=
~

pc
=

~

√
mgn0

. (2.151)

By using (2.151), (1.83) and (1.1) we get for a number of particles in a volumeξ
3

the macroscopic value

nξ
3∼ 1

~
2

1√
an

1
3

2 � 1. (2.152)

and therefore, the lengthξ is much larger than the average interparticle distance.
If L is the length of one vortex, we now get for the energy of the vortex

E(k)
L

=
1
2

∫
d2r ρv2

s =
1
2

nm

(
~k
m

)2∫ d2r
r2 (2.153)

= πnm

(
~k
m

)2∫ R

ξ

dr
r

= πn
~

2

m
k2 ln

(
R
ξ

)
(2.154)

and for the angular momentum

M(k)
L

=
∫

d2r ρvsr = mn
~

m
k2π

∫ R

ξ

dr r ≈ πn~kR2. (2.155)
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Figure 2.5: Radial partf (r) of the wave function in superfluid BOSEgas

Conclusions:
If M is fixed then we either havek repeated vortices or one vortex with circulation
k5. SincekE(1) < E(k) it is energetically favorable to have vortices withk = 1
only.
The critical velocity, when at least one vortex exists, is with

Erot = E− (~M ·~ΩC) != 0 (2.156)

ΩC =
E(1)
M(1)

=
~

mR2 ln

(
R
ξ

)
. (2.157)

ΩC is very small, usuallyΩ�ΩC and many vortices exist. They repel each other
and a lattice is created where phonons can be observed.

Figure 2.6: Many vortices in superfluid BOSEgas

5or a proper combination of both
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If we compare our superfluid rotation with solid body rotation we get withk = 1∮
~vSd~l =

~

m

∮
∇Φd~l =

2π~

m
Nv =

2π~

m
nvSc (2.158)∮

~vs.b.d
~l =

∫
d2s∇×~vs.b.= 2ΩSc. (2.159)

HereNv andnv are the number and density of vortices respectively andSc the area
enclosed in the calculation. Substituting both equation we get

nv =
mΩ
~π

. (2.160)

The velocity around one vortex is

~vs =
~

m
~ez×~r

r2 (2.161)

and the total velocity is the superposition of each velocity

~vs(~r) = ∑
i

~

m

~ez×
(
~r−~r i

)
|~r−~r i |2

. (2.162)

2.5 BEC in an isotr. harmonic trap at T=0

2.5.1 Comparison of terms in GP

Ĥ =
∫

d3r ψ̂
†
{
− ~

2

2m
∇2 +U(~r)

}
ψ̂ +

1
2

g
∫

d3r ψ̂
†
ψ̂

†
ψ̂ψ̂ (2.163)

U(~r) =
mω

2

2
r2 g =

4π~
2

m
a (2.164)

A macroscopic number of particles is in the ground state of the trap and the con-
densate wave function can be written as

Φ(~r, t) =
(

lim
N→∞

)
〈N−1|ψ|N〉= ϕ(~r, t)e−i µt

~ (2.165)

Here the braces around the limit denote that we always take the leading terms in
N only. The exponential wave function carries only the trivial time dependences
which arises from the different number of particles. We now get the time depen-
dent GP (cf. (2.128)) with potential.

i~
∂

∂ t
ϕ =

{
− ~

2

2m
∇2−µ +U(r)

}
ϕ +g|ϕ|2ϕ (2.166)
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The ground state must be a stationary state. We can chooseϕ real because ifϕ
contained a non trivial space dependent phaseφ(r) this would cause a gas flow
and therefore an increase of energy (cf. (2.142)) Thus, the equation of the ground
state wave functionϕ(~r) reads

− ~
2

2m
∇2

ϕ +U(~r)ϕ +gϕ
3 = µϕ (2.167)

n(~r) = ϕ
2

∫
d3r ϕ

2(~r) = N (2.168)

Solving this equation we getµ.
The simplest case is the non-interacting gas, i.e.g = 0:

µ = ε0 =
3
2
~ω (2.169)

ϕ =
√

Nϕ0(~r) =
√

N
1√
l30π

3
2

e
− r2

2l20 l0 =

√
~

mω

(2.170)

If we are looking at weak interaction, we can assume the wave function to still
have a similar form. Before proceeding, we have to define the term "weak". For
this purpose the ratio between kinetic and potential to interaction energy has to be
considered. More precisely

Ekin ∼ Epot∼ ~ωN (2.171)

Eint ∼
1
2

g
∫

d3r ϕ
4 =

1
2

g
∫

d3r n2(r)≈ gn̄N = g
N
l30

N (2.172)

= 4π

~
2

m
a
l0

N2

~

mω

∼ ~ωN

(
N

a
l0

)
thus (2.173)

Eint

Ekin
∼ N

a
l0

(2.174)

This ratio describes how important interaction is for the ground state wave func-
tion.
In the experiment we havel0∼ 1µm and

23Na: a=2.75 nm 87Rb: a=5.77 nm 6Li: a=-1.45 nm (2.175)

This yields a
l0
∼ 10−3. Therefore we can consider the interaction to be small if

N< 1000 otherwise we have to consider the interaction right from the beginning.
On the other hand we still have a gas as our criteria shows:

n̄a3� 1 ⇒ N
l30

a3 =
(

N
a
l0

)(
a
l0

)2

� 1 (2.176)

Our system is gaseous whileN< 10003 = 109.
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2.5.2 Thomas-Fermi-Regime

Repulsive Interaction

This regime is specified by

N
a
l0
� 1 (2.177)

Since we are dealing with a trapped gaseous system we assume the system to
occupy a volumeR3 with

R� l0 (2.178)

As described in (2.174) we have

Ekin� Eint ∼ gn̄N = g
N
R3N = g

N2

R3 (2.179)

µ =
∂E
∂N
≈

∂Eint

∂N
∼ g

N
R3 (2.180)

Because ofE ≈ Eint (definition of THOMAS-FERMI regime) andµ = ∂E
∂N we get

mω
2R2

2
∼ µ = g

N
R3 (2.181)

⇔ R5∼ g
N

mω
2 ∼

~
2a
m

N
mω

2 ∼ Na

(
~

mω

)2

= Nal40 (2.182)

= l50

(
N

a
l0

)
(2.183)

⇒ R∼ l0

(
N

a
l0

) 1
5

� l0 (2.184)

Therefore we justify (2.178)6.

µ = g
N
R3 ∼

~
2a
m

N
l30

(
N

a
l0

)− 3
5

∼ ~ωN
a
l0

(
N

a
l0

)− 3
5

(2.185)

= ~ω

(
N

a
l0

) 2
5

� ~ω (2.186)

Ekin ∼
~

2

2mR2N =
~

2

2ml20
N

(
N

a
l0

)− 2
5

= ~ωN

(
N

a
l0

)− 2
5

(2.187)

6Note however, that 2.
(

N a
l0

) 1
5
. 3 in real experiments.
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Comparing this toEint = µN we get

Ekin

µN
∼
(

N
a
l0

)− 4
3

� 1 (2.188)

which is consistent with (2.179). This means the kinetic energy per particle is
� ~ω.
For numerical calculations it is convenient to use the dimensionless GP. To achieve
this we set

r = l0r̃ µ = ~ωµ̃ ϕ =

√
N
l30

ϕ̃ (2.189)

If we insert this into the GP (2.167) we get{
− ~

2

2m
1
l20

∇2
r̃ +

mω
2

2
l20 r̃2
}

ϕ̃ +
4π~

2a
m

N
l30

ϕ̃
3 = ~ωµ̃ϕ̃ (2.190){

−~ω

2
∇2

r̃ +
~ω

2
r̃2
}

ϕ̃ +4π~ω

Na
l0

ϕ̃
3 = ~ωµ̃ϕ̃ (2.191){

−1
2

∇2
r̃ +

1
2

r̃2
}

ϕ̃ +4π

Na
l0

ϕ̃
3 = µ̃ϕ̃ (2.192)

If we are looking for the stationary ground state solution we can neglect all deriva-
tives in (2.167) because the ground state is time independent and the kinetic terms
are negligible and get

mω
2r2

2
ϕ +gϕ

3 = µϕ (2.193)

ϕ
2(r) =

1
g

(
µ−mω

2r2

2

)
⇔ r ≤ R=

1
ω

√
2µ

m
(2.194)

and 0 otherwise.
Only at R numerical calculations show slight difference to our approximation.
Using this, we get

N =
∫

d3r ϕ
2(r) =

1
g

∫ R

0
d3r

(
µ−mω

2r2

2

)
(2.195)

=
µ

g

∫ R

0
d3r

(
1− r2

R2

)
(2.196)

=
µ

g
R34π

∫ 1

0
dxx2(1−x2) = 4π

µ

g
R3
(

1
3
− 1

5

)
(2.197)
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Figure 2.7: ϕ
2 = n in THOMAS-FERMI regime. The dashed line indicates the

numerical solution for the radial wave function.

= 4π

µm
4π~

2a
1

ω
3

(
2µ

m

) 3
2 2

15
(2.198)

= (2µ)
5
2

1√
maω

3
~

215
(2.199)

=
1
15

(
2µ

~ω

) 5
2
√
~

a
√

mω

=
1
15

(
2µ

~ω

) 5
2 l0

a
(2.200)

µ =
1
2
~ω

[
15N

a
l0

] 2
5

(2.201)

Attractive Interaction

If we now consider the regimea< 0 we expect a collapse of the free system. If
the system is in a trap, the energy levels are discrete and an equilibrium (more
precisely, a long living metastable state) is possible. More quantitative (2.171)
and (2.173)

Ekin = ~ωN (2.202)

Eint ∼ gn̄N =−~ωN2 |a|
l0

(2.203)

IF N is small the kinetic term can still be dominant thus preventing the collapse,
i.e.

N
a
l0
< 1 (2.204)

is necessary.
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To get a more quantitative picture we introduce a parameterz to describe possi-
ble solutions and start out with the ground state wave function of the harmonic
oscillator

ϕ(r) =
√

N
1√

l30z3
√

π
3
e
− r2

2l20z2 (2.205)

The energy is now a function ofz:

E(z) = E0(z)+Eint(z) (2.206)

E0(z) =
∫

d3r ϕ

{
− ~

2

2m
∇2 +

mω
2r2

2

}
ϕ (2.207)

=
~ω

2
N

π
3
2

∫
d3r ′e−

r′2
2

{
−z−2∇2

r ′ +z2r ′2
}

e−
r′2
2 (2.208)

=
~ω

2
N

π
3
2

∫
d3r ′e−

r′2
2

{
z−2
(
−∇2

r ′− r ′2
)

︸ ︷︷ ︸
→0

+
(
z2 +z−2) r ′2

}
e−

r′2
2 (2.209)

=
~ω

2
N
(
z2 +z−2) 1

π
3
2

∫
d3r ′e−r ′2r ′2 (2.210)

=
~ω

2
N
(
z2 +z−2) 4π

π
3
2

∫ ∞

0
dr′ r ′4e−r ′2︸ ︷︷ ︸

3
√

π

8

(2.211)

= ~ωN
3
4

(z2 +z−2) (2.212)

Analogously we calculate

Eint =
1
2

g
∫

d3r ϕ
4 = · · ·= 1√

2π

~ωN

(
N

a
l0

)
1
z3 (2.213)

Therefore,

E(z) = ~ωN
{3

4
(z2 +z−2)− 1√

2π

(
N

a
l0

)
︸ ︷︷ ︸

ξ

1
z3

}
(2.214)

Minima of this function can be obtained from this equations

E′(z)
~ωN

=
3
2

(z−z−3)+3ξ

1
z4 =

3
2z4

{
z5−z+2ξ

}
!= 0 (2.215)

⇔ 0
!= z(z4−1)+2ξ (2.216)
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In the limit ξ � 1 we get

z1≈ 2ξ +O(z4) (2.217)

z2 = 1− 1
2

ξ (2.218)

The minimum valuez∗ of the expressionz(z4−1) obeys the equation

(z5−z)′ = 5z4−1 (2.219)

Thus the minimum occurs at

z∗ =
1

5
1
4

(2.220)

and equals

m := z∗(z4
∗−1) =− 4

5
5
4

(2.221)

Figure 2.8:E(z) for different values ofξ ; "- -" 2ξ <m and "–" 2ξ >m

Therefore a solutions of (2.215) or (2.216) exists only if

2ξ >m=
4

5
1
4

(2.222)

As a result the critical value ofN is:

Nc
|a|
l0

=
√

2π

2

5
5
4

= 0.671 in approximation (2.223)

= 0.575 numerically in GP (2.224)
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Hydrodynamic approach

From superfluid4He we expect that hydrodynamics may be applicable for our sys-
tem as well. The important variables in hydrodynamics are density and velocity
(which is ~m∇Φ in our case cf. (2.143)). We are still considering the THOMAS-
FERMI-Regime (2.177). Starting out with the ansatz

ψ =
√

n(~r, t)eiΦ(~r,t) ~vS =
~

m
∇Φ (2.225)

we evaluate the the various derivatives:

i~
∂

∂ t
ψ = i~eiΦ

{
∂

∂ t

√
n+ i
√

n
∂

∂ t
Φ
}

(2.226)

= i~eiΦ
{√

n
1
2n

∂

∂ t
n+ i
√

n
∂

∂ t
Φ
}

(2.227)

= ψ i~

(
1
2n

∂n
∂ t

+ i
∂Φ
∂ t

)
and (2.228)

− ~
2

2m
∇2

ψ =− ~
2

2m

{
(∇2√n)eiΦ +2(∇

√
n)(∇eiΦ)

+
√

n(∇2eiΦ)
}

(2.229)

=− ~
2

2m

{
(∇2√n)eiΦ +

√
n

n
(∇n)i(∇Φ)eiΦ

+
√

n(∇(i(∇Φ)eiΦ)
}

(2.230)

=− ~
2

2m

√
neiΦ︸ ︷︷ ︸
ψ

{ 1√
n

(∇2√n)+
i
n

(∇n)(∇Φ)

+ i∇2Φ− (∇Φ)2} (2.231)

to stitch the GP (2.166) together:

i~

(
1
2n

∂n
∂ t

+ i
∂Φ
∂ t

)
=− ~

2

2m

{
1√
n

(∇2√n)− (∇Φ)2 +
i
n

(∇n)(∇Φ)+ i∇2Φ
}

−µ +U(r)+gn (2.232)

For the imaginary part we get

i~
1
2n

∂n
∂ t

=− ~
2

2m
i
n

(∇n∇Φ +n∇2Φ) =−i
~

2

2mn
∇(n∇Φ). (2.233)

This is the continuity equation:

∂n
∂ t

+ ∇(n~vs) = 0 (2.234)
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Evaluating the real part we get

−~∂Φ
∂ t

=− ~
2

2m
1√
n

(∇2√n)+
m
2

v2
s−µ +U(r)+gn. (2.235)

Differentiating this equation with respect to space coordinates (∇) we get

m
∂~vs

∂ t
+ ∇

{
− ~

2

2m
√

n
∇2√n+

m
2

v2
s−µ +U(r)+gn

}
= 0 (2.236)

If we linearize both equations, bearing in mindN a
l0
� 1, we can neglect∇

√
n

because we are in the THOMAS-FERMI regime were kinetic energies are small:

n = n0(~r)+ δn(~r, t) (2.237)

~vs =
~

m
∇Φ(~r, t) v2

s ≈ 0 (2.238)

For the ground state we have (2.193)

n0(~r) =
1
g

[µ−U(r)] (2.239)

which leads (2.234) and (2.236) to

∂

∂ t
δn+ ∇(n0vs) = 0 and (2.240)

m
∂

∂ t
vs+ ∇(U(r)−µ +gn0︸ ︷︷ ︸

=0

+gδn) = 0 (2.241)

⇔ m
∂

∂ t
vs+g∇δn = 0. (2.242)

Differentiating again with respect tot we get

∂
2

∂ t2δn + ∇
(

n0
∂~vs

∂ t

)
=

∂
2

∂ t2δn + ∇
(

n0(−)
g
m

∇δn
)

= 0 (2.243)

⇔ ∂
2

∂ t2δn−∇
( n0g

m︸︷︷︸
=c2

∇δn
)

= 0 (2.244)

This equation can be solved for a harmonic trap ([4]). The energy remains degen-
erated with respect to angular momentum projection:

ωnr ,l
= ω

√
2n2

r +2nr l +3nr + l (2.245)

ω
0
nr ,l = ω(2nr + l) non interacting case (2.246)
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The solutions are quite different for the interacting and the non interacting case,
e.g. fornr = 0 they are

ω0,l = ω

√
l vs. ω

0
0,l = ω l . (2.247)

This different behavior can be distinguished in experiments.

High energy solutions

In this case we have to formulate a more general wave function:

ψ(~r, t) = ϕ(~r)+ ψ
′(~r, t) (2.248)

Hereϕ(r) is the ground state wave function which can be considered as a real
function andψ

′ � ϕ describes excitations. Inserting this ansatz into the GP
(2.166) and linearizing with respect toψ

′ we get

i~
∂

∂ t
ψ
′ =
{
− ~

2

2m
∇2−µ +U(r)

}
ϕ(r)+{. . .}ψ

′(~r, t) (2.249)

+gϕ
2
ϕ +gϕ

2(2ψ
′+ ψ

′∗) (2.250)

=
{
− ~

2

2m
∇2−µ +U

}
ψ
′+gϕ

2(2ψ
′+ ψ

′∗) (2.251)

This can be solved with

ψ
′ = u(r)e−iωt +v∗(r)eiωt (2.252)

Inserting this solution into (2.251) we get the following system of equations foru
andv:

~ωu =
{
− ~

2

2m
∇2−µ +U +2gϕ

2
}

u+gϕ
2v (2.253)

−~ωv =
{
− ~

2

2m
∇2−µ +U +2gϕ

2
}

v+gϕ
2u (2.254)

These are the BOGOLYUBOV-DE GENNESequations. Theui andvi are the wave
function of the excitations while~ωi is the excitation energy.
A different approach for the same problem is to use the BOGOLYUBOV transfor-
mation. Since it is more extensive than in (2.3) the solution is only sketched here.
We start out again with

ψ̂
′(~r) = ∑

i

{
ui(~r)ãi +v∗i (~r)ã†

i

}
(2.255)
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and require the new operators to obey[
ãi , ã

†
j

]
= δi j (2.256)[

ãi , ã j

]
=
[
ã†

i , ã
†
j

]
= 0 (2.257)

since we want a canonical transformation which preserves the commutator rela-
tions.
Inserting (2.255) into the commutators we get[

ψ̂
′(~r), ψ̂ ′(~r ′)

]
= 0 (2.258)

⇒ ∑
i

{
ui (~r)v∗i (~r ′)−v∗i (~r)ui (~r ′)

}
= 0 (2.259)[

ψ̂
′(~r), ψ̂ ′

†
(~r ′)
]

= δ (~r−~r ′) (2.260)

⇒ ∑
i

{
ui (~r)u∗i (~r ′)−v∗i (~r)vi (~r ′)

}
= δ (~r−~r ′) (2.261)

Using the inverse transformation

ãi =
∫

d3r
[
u∗i ψ̂

′(~r)−viψ̂
′†(~r)

]
(2.262)

we get ∫
d3r
[
u∗i (~r)u j (~r)−v∗i (~r)v j (~r)

]
= δi j (2.263)∫

d3r
[
ui(~r)v j(~r)−vi(~r)u j(~r)

]
= 0 (2.264)

This is a mathematically rather unusual requirement, e.g. looking at (2.263) with
i = j we have ∫

d3r
{
|ui |

2−|vi |
2}= 1 (2.265)

The HAMILTON ian can be transformed, i.e.

Ĥ = Ĥ(ϕ)+
∫

d3r ψ̂
′†
{
− ~

2

2m
∇2 + µ +U +2gϕ

2
}

ψ̂
′

+
1
2

g
∫

d3r ϕ
2
(

ψ̂
′†

ψ̂
′† + ψ̂

′
ψ̂
′
)

(2.266)

!= Ĥ(ϕ)+const+~∑
i

ωi ã
†
i ãi (2.267)

if and only if theui andvi obey the BOGOLYUBOV-DE GENNESequations (2.253)
and (2.254).



Chapter 3

Fermions

3.1 Free Fermions

3.1.1 General properties

We describe our particles by their momenta~p and some other quantum numbers
α which might represent spin projections or hyper fine states. The other quantum
numbers haveg possible values (labeledj) in total. For now, our energy depends
only on~p, i.e. we do not consider effects like spin-orbit splitting. In the free gas
case we get

εp =
p2

2m
and (3.1)

nf(~p,T) =
1

exp
(

εp−µ

T

)
+1

(3.2)

n =
∫

d3p
(2π~)3nf(~p,T) (3.3)

Sincen remains fixed the last equation definesµ(T). At T = 0 we callµ(T =
0) = εF the FERMI energy.
All states withp≤ pF =

√
2mεF are occupied. The reason for this is the PAULI

principle which allows at most 1 occupation of each single particle quantum state
(or at most g particles in an energy level which isg times degenerate):

n = g
∫

d3p
(2π~)3Θ(εF− εp) =

4π

(2π~)3g
∫ pF

0
dp p2 = g

p3
F

6π
2
~

3 (3.4)

= g
(2mεF)

3
2

6π
2
~

3 εF = εF(n) only (3.5)

47
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Figure 3.1: FERMI-DIRAC-Distribution atT = 0 (left) and at 0< T� εF (right)

E0 = g
∫

d3p
(2π~)3Θ(εF− εp)

p2

2m
= n

3
5

εF (3.6)

If we now consider low temperatures, i.e. 0< T� εF we get the following distri-
bution:
Hereµ(T,n) 6= εF. We rather get

n = g
∫

d3p
(2π~)3

1

exp
(

ε−µ

T

)
+1

(3.7)

=
∫ ∞

0
dε g

∫
d3p

(2π~)3 δ (ε− εp)
1

exp
(

ε−µ

T

)
+1

(3.8)

=
∫ ∞

0
dε ν(ε)

1

exp
(

ε−µ

T

)
+1

(3.9)

where the density of statesν(ε) is

ν(ε) = g
∫

d3p
(2π~)3 δ

(
ε− p2

2m

)
(3.10)

= g
4π

(2π~)3

∫ ∞

0
dp p2

δ

(
ε− p2

2m

)
(3.11)

=
g

2π
2
~

3m
√

2m
∫ ∞

0
d

(
p2

2m

)√
p2

2m
δ

(
ε− p2

2m

)
(3.12)

= g
m

2π
2
~

3

√
2mε = g

mp(ε)
2π

2
~

3 (3.13)

Looking again at figure (3.1) we see, that only the region aroundεF is of interest.
Sinceν(ε) is analytic and smooth forε close toεF we can generally consider for
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every analytic functionf (ε):∫ ∞

0
dε f (ε)

1

exp
(

ε−µ

T

)
+1

=
∫ ∞

−µ

dξ f (µ + ξ )
1

exp
(

ξ

T

)
+1

(3.14)

=
∫ ∞

0
dξ f (µ + ξ )

1

exp
(

ξ

T

)
+1

+
∫

µ

0
dξ f (µ−ξ )

1

exp
(
−ξ

T

)
+1

(3.15)

=
∫ ∞

0
dξ f (µ + ξ )

1

exp
(

ξ

T

)
+1

+
∫

µ

0
dξ f (µ−ξ︸ ︷︷ ︸

ε

)

−
∫

µ

0
dξ f (µ−ξ )

1

exp
(

ξ

T

)
+1

(3.16)

≈
∫

µ

0
dε f (ε) (3.17)

+
∫ ∞

0
dξ

1

exp
(

ξ

T

)
+1

[ f (µ + ξ )− f (µ−ξ )]

≈
∫

µ

0
dε f (ε)+2 f ′(µ)

∫ ∞

0
dξ

ξ

exp
(

ξ

T

)
+1

(3.18)

=
∫

µ

0
dε f (ε)+2T2 f ′(µ)

∫ ∞

0
dx

x
ex +1

(3.19)

=
∫

µ

0
dε f (ε)+

π
2

6
T2 f ′(µ) (3.20)

Here we definedξ = ε−µ and used

1
e−x +1

= 1− 1
ex +1

for (3.15) (3.21)

µ � T ⇒ µ ≈ ∞ last term in (3.16) (3.22)∫ ∞

0
dxx

∞

∑
n=1

(−1)n+1e−nx =
∞

∑
n=1

(−1)n+1

n2 (3.23)

=
∞

∑
n=1

1
n2 −2

∞

∑
k=1

1
(2k)2 (3.24)

=
1
2

∞

∑
n=1

1
n2 =

π
2

12
in (3.19) (3.25)
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Using this so called SOMMERFELD expansion we can now calculate the particle
densityn:

n =

µ(T)∫
0

dε ν(ε)+
π

2

6
T2 dν

dε

∣∣∣∣
ε=ν

=

εF+δ µ∫
0

dε ν(ε)+
π

2

6
T2 dν

dε

∣∣∣∣
ε=ν

(3.26)

≈
εF∫

0

dε ν(ε)

︸ ︷︷ ︸
n

+δ µ ν(εF)+
π

2

6
T2 dν

dε

∣∣∣∣
ε=ν

(3.27)

which means

⇔ δ µ ν(εF)+
π

2

6
T2 dν

dε

∣∣∣∣
ε=εF

= 0 and (3.28)

(3.13):
dν

dε

∣∣∣∣
ε=εF

=
1

2εF
ν(εF) (3.29)

which leads to the shift in the chemical potential

δ µ =−π
2

12
T2

εF
=−εF

π
2

12

(
T
εF

)2

(3.30)

Using this, we can now calculate the energy using (3.20) withf (ε) = εν(ε)

E(T) =
∫ ∞

0
dε ν(ε)ε

1

exp
(

ε−µ

T

)
+1

(3.31)

=
∫

µ=εF+δ µ

0
dε ν(ε)ε +

π
2

6
T2 d

dε

(εν(ε))
∣∣∣∣
ε=ν

(3.32)

=
∫

εF

0
dε ν(ε)ε︸ ︷︷ ︸

E0

+δ µ(εFν(εF))

+
π

2

6
T2

{
ν(εF)+ εF

∂ν

∂ε

∣∣∣∣
ε=εF

}
(3.33)

= E0 +
π

2

6
T2

ν(εF)+ εF

[
δ µν(εF)+

π
2

g
T2∂ν

∂ε

∣∣∣∣
ε=εF

]
︸ ︷︷ ︸

=0 (3.28)

(3.34)
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Can we understand this solution physically ? We haveTν(ε) states available for
excitation with energy of the order ofT, which is exactly what the calculation
gives in 0th order.
The specific heat is

cV =
dE
dT

=
π

2

3
ν(εF)T (3.35)

unlike the BOSEgas wherecV ∼ T3.

3.1.2 Pressure of degenerated Fermi gas

For classical gases

p = nT (3.36)

holds meaning atT = 0 pressure vanishes. For quantum gases (BOSE as well as
FERMI)

p =
2
3

E
V

(3.37)

holds. Refer to appendix (A) for the derivation of (3.37). HereE = E(T) for the
quantum system considered. For FERMIons we get using (3.4) and (3.6)

p =
2
3

n
3
5

εF =
2
5

n
p2

F

2m
=

1
5

n
m

(
6π~

3n
g

) 2
3

(3.38)

=
1

5m

(
6π~

3

g

) 2
3

n
5
3 6= 0 (3.39)

This pressure is sometimes called FERMI-Pressure. It stabilizes the nucleons
against strong interaction as well as neutron stars against gravitational forces.
If we look at high temperaturesT� εF we should get the classical behavior plus
some quantum corrections. To get the classical behavior we have to require

e
|µ|
T � 1 andµ negative (3.40)

To calculate the classical behavior we note that independently of the statistics of
the particle we have

e
ε+|µ|

T � 1 for largeT (3.41)
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and for FERMIons

nf(ε) =
1

exp
(

ε−µ

T

)
+1

=
1

exp
(

ε+|µ|
T

)
+1

(3.42)

≈ e−
|µ|
T −

ε

T

(
1−e−

|µ|+ε

T

)
(3.43)

Bearing in mind, that we work with a fixedn we get

n = g
∫

d3p
(2π~)3 nF≈ g

∫
d3p

(2π~)3 e
µ

T−
ε

T

(
1−e

µ

T−
ε

T

)
(3.44)

=
g

2π~
3m
√

2m
∫

dε

√
ε e

µ

T−
ε

T

(
1−e

µ

T−
ε

T

)
(3.45)

=
gm
√

2m
2π

2
~

3 T
3
2e

µ

T

∫
dx
√

xe−x
(

1−e
µ

T−x
)

(3.46)

=
gm
√

2m
2π

2
~

3 T
3
2e

µ

T

√
π

2

(
1−e

µ

T
1

2
√

2

)
(3.47)

Here we used the definition of theΓ-Function

Γ(z) =
∞∫

0

dt tz−1e−t (3.48)

with its properties

Γ(1+z) = zΓ(z) Γ
(

1
2

)
=
√

π (3.49)

Therefore our assumption (3.40) must hold true for the last term in (3.47) to be
small. Neglecting the last term we solve for the chemical potential in the lowest
order (BOLTZMANN case)

e
µB
T =

n
g

2√
π

2π
2
~

3

m
√

2m

1

T
3
2

=
n
g

(
2π

mT

) 3
2

~
3 (3.50)

∼
(

εF

T

) 3
2 � 1 (3.51)

Similarly we can calculate the first correction to the classical equation for the
pressure:

p =
2
3

∫ ∞

0
d3pν(ε)nf(ε)ε (3.52)

=
2
3

m
√

2m
2π

2
~

3 g
∫ ∞

0
dε ε

3
2e

µ

T−
ε

T

(
1−e

µ

T−
ε

T

)
(3.53)

=
2
3

g
m
√

2m
2π

2
~

3 e
µ

T T
5
2

∫ ∞

0
dxx

3
2e−x

(
1−e−xe

µ

T

)
(3.54)
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=
2
3

g
m
√

2m
2π

2
~

3 T
5
2e

µ

T Γ
(

5
2

)(
1−e

µ

T
1

4
√

2

)
(3.55)

= g
m
√

2m
2π

2
~

3 T
5
2e

µ

T

√
π

2

(
1−e

µ

T
1

4
√

2

)
(3.56)

= Tg
m
√

2m
2π

2
~

3 T
3
2e

µ

T

√
π

2

(
1− 1

2
√

2
e

µ

T +
1

4
√

2
e

µ

T

)
(3.57)

= Tn+Tg
m
√

2m
2π

2
~

3

√
π

2
T

3
2

1

4
√

2
e2

µB
T (3.58)

= Tn+T
n

4
√

2

n
g

2√
π

2π
2
~

3

m
√

2m

1

T
3
2

(3.59)

= nT

(
1+
(

π

mT

) 3
2 n~3

2g

)
(3.60)

ForT↗∞ the correction vanishes of course. Note, that this increase in pressure is
due toonly the FERMI statistics as no interaction was considered. The correction

is of the order of
(

εF
T

) 3
2
. In the case of BOSons a similar term appears but it is

subtracted from the classical value.

3.1.3 Excitations of Fermions at T=0

Figure 3.2: Small excitations at the FERMI surface (left)

If we look for excitations atT = 0 the system is in its ground state before the
excitation. Afterwards one particle is above the FERMI surface leaving a hole be-
low the FERMI surface. Condense matter physicists call this a "particle hole pair".
Since we currently consider no interaction the particle and hole are uncorrelated
and can be treated separately. Even if interaction is considered the correlation be-
tween particle and hole can be usually neglected since their number is small (for
T� εF) and, therefore they are "far away".
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particle excitations We add a particle into a state~p with |~p|> pF. This gives the
excitation energy

εp = E0(N)+
p2

2m
−E0(N +1) (3.61)

=
p2

2m
− (E0(N +1)−E0(N))︸ ︷︷ ︸

=µ=εF

=
p2

2m
− p2

F

2m
> 0 (3.62)

hole excitations We remove a particle from a state~p with |~p| < pF. This gives
the excitation energy

εp = E0(N)− p2

2m
−E0(N +1) =

p2
F

2m
− p2

2m
> 0 (3.63)

The energy gain is therefore in both cases

ε =
∣∣∣∣ p2

2m
− p2

F

2m

∣∣∣∣> 0 (3.64)

Obviously you can get the same result for a particle hole pair if you simply calcu-
late the energy difference before (p2 < pF) and after (p1 > pF) the excitation

δε =
p2

1

2m
−

p2
2

2m
=
(

p1
1

2m
− p2

F

2m

)
+
(

p2
F

2m
−

p2
2

2m

)
= ε1 + ε2 (3.65)

We can also discuss this in operator language. If we define

ã†
p = upa

†
p +vpa−p (3.66)

with

up =

{
1 p> pF

0 p< pF

vp =

{
0 p> pF

1 p< pF

(3.67)

whereu adds a particle andv adds a hole we can rewrite the HAMILTON ian (1.84
with g = 0) as

Ĥ ′ = ∑
p

(
p2

2m
−µ

)
a†

pap = E′0 +∑
p

∣∣∣∣ p2

2m
−µ

∣∣∣∣ ã†
pãp (3.68)

E′0 is the energy of the ground state and the energy of excitations is always positive
(which was not satisfied before the transformation). Of course the new operators
obey

ãp|g〉= 0 (3.69)

where|g〉 is the ground state (filled FERMI sphere).
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3.2 Trapped non-interacting Fermi gas at T=0

We consider the isotropic case (U(r)) and large number of particle (N� 1). The
energy depends only on the quantum numbersn andl and does not depend on the
projection of the angular momentum, i.e.

ε
ν

= εnl (3.70)

ε
ν

= ~ω(2n+ l +
3
2

) for UI ≡ 0 (3.71)

Figure 3.3: Schematic view of a trapped particle with largen

Since the system is rotational invariant, we have

ψnlm =
χnl

r
Ylm(~r) (3.72)

HereYlm(~r) are the spherical harmonic functions andχ obeys the radial SCHRÖ-
DINGER equation

d2
χnl

dr2 + κ
2
nl(r)χnl(r) = 0 with (3.73)

k2
nl(r) = 2m(εnl−U(r))− ~

2l(l +1)
r2 (3.74)

SinceN� 1 we know that only particles withn� 1, i.e. those near the FERMI

surface, can be excited. We can therefore apply WKB approximation.
If we call the classical turning pointsr1 andr2 we can approximate the radial wave
function as

χnl(r) =
cnl√
pnl

cos

{∫ r2

r1

dr′ pnl(r
′)− π

4

}
for r1 < r < r2 (3.75)

pnl(r) =

√
2m(εnl−U(r))−~2

(l + 1
2)2

r2 (3.76)
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This regime (n� 1 butl arbitrary) is called THOMAS-FERMI regime. To calculate
the density profile we use the semi-classical BOHR quantitazion requirement∫ r2

r1

dr′ pnl(r
′) = π~

(
n+

1
2

)
(3.77)

First we want to calculate the normalization coefficientcnl:∫
d3r |ψnlm|

2 = 1 =
∫

dr
|χnl|

2

r2 r2 =
∫ ∞

0
dr |χ|2 thus (3.78)

1 =
∫ r2

r1

dr
c2

nl

pnl(r)
cos2{. . .} (3.79)

= c2
nl

∫ r2

r1

dr
1

pnl

1
2

(1+cos[2{. . .}]) (3.80)

≈
c2

nl

2

∫ r2

r1

dr
1

pnl
(3.81)

Since the integral over strongly oscillating terms almost vanishes we can neglect
the second term in (3.80). To calculate the other term we differentiate (3.77) in
respect ton. Since the integrandpnl(r) vanishes at the limits of the integration we
only have to differentiate the integrand, i.e. differentiating in respect to the upper
bound gives

∂ r2

∂n
∂

∂ r2

∫ r2

r1

dr pnl(r) =
∂ r2

∂n
pnl(r2) = 0 (3.82)

Therefore we have

π~= m
∂εnl

∂n

∫ r1

r2

dr√
2m(εnl−U(r))− ~

2(l+ 1
2)2

r2

(3.83)

= m
∂εnl

∂n

∫ r2

r2

dr
1

pnl(r)
(3.84)

⇒
c2

nl

2
=

m
π~

∂εnl

∂n
(3.85)

Note that the normalization coefficient is formally independent of the potential
(which is of course relevant through the energy eigenvaluesε).
To calculaten we note, that

l

∑
m=−l

|Ylm(~r)|2 =
2l +1

4π

(3.86)

∑
n

∂εn

∂n
f (εn) =

∫
dn

∂ε

∂n
f (ε) =

∫
dε f (ε) (3.87)
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Now the particle density profile is

n(r) = g∑
ν

|ψ
ν
(~r)|2 (3.88)

= g∑
nlm

|Ylm(~r)|2 1
r2

c2
nl

pnl
cos2{} (3.89)

≈ g
4π

∑
nl

2l +1
r2

c2
nl

pnl(r)
1
2

(3.90)

=
g

4π
∑
nl

2l +1
r2

m
π~

∂εnl

∂n
1√

2m(εnl−U(r))−~2(l+ 1
2)2

r2

(3.91)

= g
m

4π~
∑
l

2l +1
r2 ∑

n

∂εnl

∂n
1
√
. . .

(3.92)

= g
m

4π~
∑
l

2l +1
r2

∫
εF

εl (r)
dε

1
√
. . .

(3.93)

= g
1

4π~
∑
l

2l +1
r2

√
2m(εnl−U)−~2

(
l + 1

2

)2
r2

∣∣∣∣∣∣
εF

εl (r)

(3.94)

= g
1

4π~
∑
l

2l +1
r2

√
2m(εF−U)−~2

(
l + 1

2

)2
r2 (3.95)

= g
1

4π~
3

∫ xmax(r)

0
dx
√

2m(εF−U(r))−x (3.96)

= g
1

4π~
3

(
−2

3

)
(2mεF−U(r)−x)

3
2

∣∣∣xmax(r)

0
(3.97)

=
g

6π
2
~

2(2m(εF−U(r)))
3
2 (3.98)

at T = 0. The summation/integration limits have always to be chosen such thatp
remains real.
This result means that if we redefine

p2
F(r)
2m

+U(r) = εF (3.99)

we get locally the same result as in the non trapped case

n(r) = g
p3

F(r)
6π

2
~

3 (3.100)

but now withlocal FERMI momentum.
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3.3 Weakly interacting Fermi gas

3.3.1 Ground state

Again we work in second quantization and assume there to beg different types of
FERMIons, i.e.

ψ̂ j(~r) j = 1, . . . ,gwith (3.101){
ψ̂ j(~r), ψ̂ j ′(~r

′)
}

=
{

ψ̂
†
j (~r), ψ̂

†
j ′(~r
′)
}

= 0 (3.102){
ψ̂ j (~r), ψ̂

†
j ′(~r
′)
}

= δ j j ′δ (~r−~r ′) (3.103)

This means that for each type of FERMIon each state is either occupied once or is
not occupied at all, which is of course the PAULI principle.

The HAMILTON ian now reads

Ĥ = ∑
j

∫
d3r ψ̂

†
j (~r)
−~2

2m
∇2

ψ̂ j(~r)

+
1
2∑

j j ′

∫
d3rd3r ′ ψ̂†

j (~r)ψ̂ j (~r)︸ ︷︷ ︸
n̂ j (~r)

UI(~r−~r
′) ψ̂

†
j ′(~r
′)ψ̂ j ′(~r

′)︸ ︷︷ ︸
n̂

j′(~r
′)

(3.104)

= ∑
j

∫
d3r ψ̂

†
j (~r)
−~2

2m
∇2

ψ̂ j(~r)

+
1
2∑

j j ′

∫
d3rd3r ′ ψ̂†

j ′(~r
′)ψ̂

†
j (~r)UI(~r−~r

′)ψ̂ j(~r)ψ̂ j ′(~r
′) (3.105)

We use the following assumption:

UI = V0δ (~r−~r ′) (3.106)

This means we consider only short range interactions. This is reasonable because
we consider gases withr0pF� 1 andpF∼ density−

1
3 ((1.1) and (1.3)). We wrote

pF here instead ofp because only momentap∼ pF are relevant for any physical
process.
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Using this we get

Ĥ = ∑
j

∫
d3r ψ̂

†
j (~r)
−~2

2m
∇2

ψ̂ j(~r)

+
1
2
V0 ∑

j 6= j ′

∫
d3r ψ̂

†
j ′(~r)ψ̂

†
j (~r)ψ̂ j (~r)ψ̂ j ′(~r) (3.107)

= ∑
j

∫
d3r ψ̂

†
j (~r)
−~2

2m
∇2

ψ̂ j(~r)

+V0 ∑
j< j ′

∫
d3r ψ̂

†
j ′(~r)ψ̂

†
j (~r)ψ̂ j (~r)ψ̂ j ′(~r) (3.108)

where we have to exclude the case ofj = j ′ due to the PAULI principle. If we have
a spatial homogeneous system we can write our wave function as

ψ̂ j(~r) = ∑
~p

a~p, je
i ~p·~r
~ (3.109)

In this case we also have momentum conservation, i.e.

~p1 +~p2 = ~p3 +~p4 (3.110)

This will be denoted by a tick at the appropriate summations.

Ĥ = ∑
j,~p

p2

2m
a†
~p, ja~p, j +V0 ∑

p1p2p3p4

′ ∑
j< j ′

a†
p4 j ′a

†
p3 jap1 jap2 j ′ (3.111)

In this expression we obviously see that if we have only one type of FERMIons the
interaction term vanishes. This is because we consider only s-wave scattering (i.e.
lowest order). If we consider for example the two particle wave function which
has to fulfill the PAULI principle

ϕ(1,2) = ϕi j (~r1−~r2) =−ϕ ji (~r2−~r1) (3.112)

If we look at the state with a given relative angular momentuml of these two
particles we have

ϕi j (~r1−~r2) = (−1)l
ϕi j (~r2−~r1) leading to (3.113)

ϕi j (~r1−~r2) =−(−1)l
ϕ ji (~r1−~r2) (3.114)
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Thus we have two cases to consider

l = 0,2, . . . ϕi j =−ϕ ji =
1√
2

(|i〉| j〉− | j〉|i〉) (3.115)

l = 1,3, . . . ϕi j = ϕ ji =
1√
2

(|i〉| j〉+ | j〉|i〉) (3.116)

This means we have to haveg≥ 2 for even relative angular momentum (3.115)
andg≥ 1 for odd relative angular momentum (3.116). Since we consider only
l = 0 we therefore need at least two types of FERMIons to have a non vanishing
interaction.
Returning to the non interacting HAMILTON ian we get the ground state energy

Eg = ∑
j,~p

p2

2m
〈a†

p jap j〉= ∑
j~p

p2

2m
np j = ∑

j
n j

3
5

εF = n
3
5

εF (3.117)

Here we used (3.6) and considered the ordinary case for whichE does not depend
on j. Treating the interaction as a perturbation we get

E1 = V0∑
pi

′ ∑
j ′< j

〈a†
p4 j ′a

†
p3 jap1 jap2 j ′〉 (3.118)

= V0 ∑
j ′< j

∑
p1p2

〈a†
p2 j ′ap2 j ′〉〈a

†
p1 jap1 j〉 (3.119)

= V0 ∑
j ′< j

∑
p1p2

np2 jnp1 j ′ = V0
g(g−1)

2
n1n2 = V0

1
2

g−1
g

n2 (3.120)

In (3.118) the operators create two particles and two holes. The resulting state
will usually be orthogonal to the ground state, unlessp4 = p2 and p3 = p1. We
further assume thatn1 = n2 = · · · = n

g which is true of course only ifno external
fieldsare present.
In second order we get

E2 = ∑
e

|〈e|Ĥint|g〉|
2

Eg−Ee
(3.121)

Here|g〉 is the ground state and|e〉 is any state possible with two holes (p1 j and
p2 j ′) and two particles (p3 j andp4 j ′).

Eg−Ee =−
p2

4 + p2
3− p2

1− p2
2

2m
(3.122)

As required for any energy difference in respect to the ground state, (3.122) is
negative. Now (3.121) becomes (cf. appendix (B))
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E2 =−V2
0 ∑

j< j ′
∑
pi

′np1 jnp2 j ′

(
1−np3 j

)(
1−np4 j ′

)
p2

4+p2
3−p2

1−p2
2

2m

(3.123)

In respect top1, p2 < pF we have no problem to integrate (sum up). The conser-
vation of momentum fixesp4. p3 however can take any value larger thanpF. The
third sum (or integral) ∫ ∞

pF

d3p3
1
p2

3

(3.124)

does not converge. To eliminate this divergency, we can use the same technique
as in section (2.3) page 28 and use BORN approximation1:

4π~
2a

m
= V0−V0 ∑

p3p4

1
p2

4+p2
3−p2

1−p2
2

2m

4π~
2a

m
(3.125)

⇒ V0≈
4π~

2a
m

+
(

4π~
2a

m

)2

∑
p3p4

′ 1
p2

4+p2
3−p2

1−p2
2

2m

(3.126)

Inserting this expression forV0 into (3.120) and (3.123) we can get rid of the
divergent sums

E1 +E2 =
4π~

2a
m ∑

j< j ′
∑
p1p2

np1 jnp2 j ′ (3.127)

−
(

4π~
2a

m

)2

∑
j< j ′

∑
pi

′np1 jnp2 j ′

[(
1−np3 j

)(
1−np4, j

′

)
−1
]

p2
4+p2

3−p2
1−p2

2
2m

[. . . ] = 1−np3 j −np4 j ′ +np3 jnp4 j ′−1 = {np3 jnp4 j ′}−np3J−np4 j ′

The addend of (3.127) with{. . .} is symmetric ifp1p2 is interchanged withp3p4.
On the other hand the denominator isantisymmetricunder interchange. Since the
sum runs over allpi it has to vanish thus preventing the ultraviolet divergence
since now three out of 4 momenta are inside the sphere and the fourth momentum
is fixed.

E1 +E2 =
4π~

2a
m ∑

j< j ′
∑
p1p2

np1 jnp2 j ′

+
(

4π~
2a

m

)2

∑
j< j ′

∑
pi

′np1 jnp2 j ′

(
np3 j +np4, j

′

)
p2

4+p2
3−p2

1−p2
2

2m

(3.128)

1The summation runs over two momenta as we have two particles in the intermediate state
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= n
3
5

εF(g−1)
{

5
9

λ +
11−2ln(2)

21
λ

}
(3.129)

Hereλ is the Gas Parameter

λ =
2apF

π~

=
mpF

2π
2
~

3

4π~
2a

m
= ν j(εF)V0� 1 (3.130)

whereν j is the density of states.

3.3.2 Decay of excitations

We want to discuss the life time of excitations, i.e. the inverse scattering timeτ.
We discuss the regime ofT� εF.

Figure 3.4: Schematic plot of excitations and scattering around the FERMI sphere

The excitations 1 and 2 can "collide", i.e. interaction occurs. The lifetime of the
excitation 1 is according to FERMIs Golden Rule (appendix C)

1
τ

∼ a2
∫

d3p2dp3
1′dp3

2′ δ
(
ε1 + ε2− ε1′− ε2′

)
δ

(
~p1 +~p2−~p1′−~p2′

)
×n(~p2)(1−n(~p1′))(1−n(~p2′)) (3.131)

The first line is the classical value while the second line takes the quantum statis-
tics into account.

ε1′ + ε2′ = ε1 + ε2 > 2εF
εF < ε1. εF +T

}
⇒ εF−T . ε2 < εF, (3.132)
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i.e. the differencesε1−εF andεF−ε2 are positive and of the order of temperature
T. First we expand the energy momentum relation near the FERMI energy:

ε(p)≈ εF +vF(p− pF) for p≈ pF (3.133)

δε ∼ T ⇒ δ pvF∼ T ⇒ δ p∼ T
vF

(3.134)

We can now calculated the fraction of particles involved in the collisions by di-
viding the number of particles in the shell in momentum space of widthT

vF
by the

total number of particles:

p2
Fδ p
p3

F

=
δ p
pF
∼ T

vFpF
=

T
εF
� 1 (3.135)

If we now look at the final states we have

2εF < ε1′ + ε2′ . 2εF +T with (3.132) (3.136)

εF < ε1′ . εF +T. (3.137)

Without the PAULI principle the outgoing particles could have any energy allowed,
i.e. between 0 and 2εF + T. But with FERMI statistics being taken into account
we have only a fractionT

εF
� 1 of final states available. Thus (3.131) becomes2

1
τ

∼ na2vF

(
T
εF

)2
T→0−−→ 0. (3.138)

The first three terms are the classical value, while the fraction is caused by the
PAULI principle. The square originates in the fact that FERMI statistics imposes
restrictions on the possible momenta of the incoming and outgoing particles.
At T = 0 calculation shows

1
τ(ε)

∼ na2vF

(
ε

εF

)
. (3.139)

The energy of the excited particles obeys

εex.∼ T� ℑεex.∼
1
τ

. (3.140)

Therefore the imaginary part of the excitation spectrum is much less than the real
part and hence the excitations are well-defined.

2The exact and rather lengthy derivation is not included here
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3.4 Landau-Fermi-Liquid

First we considered the non interacting FERMI gas where we have the filled FERMI

sphere as ground state and we were capable of describing all properties forT� εF
causing excitations (particle transitions) nearεF. If we now switch on the interac-
tion adiabaticly the behavior of the system remains similar to the previous one. In
the interacting system a particle disturbs locally the surrounding particles. If we
consider the particle together with the disturbance as a new particle (quasiparticle)
we can transfer our previous discussion of the non interacting case to the interact-
ing case. This procedure is called LANDAU conjecture and it can be justified by
using a more complicated approach based on GREEN functions technique.
We are not interested in the generalE− p dependency but only near the FERMI

surface as we have seen that the most important physics takes place there. We
describe the ground state of an interacting (normal) FERMI system as a FERMI

sphere filled with quasiparticles. The number of the quasiparticles is the same as
the number of particles by the above conjecture, thus

g
p3

F

6π
2
~

3 = n = nqp (3.141)

This means the FERMI momentum also remains the same.
This FERMI liquid approach is experimentally favorably because as – we will
show now – the description boils down to a few, experimentally accessible param-
eters.
If we briefly assume we have only one type of FERMIon we can relate the change
in energy of the system to a change in the distribution function as

δE = ∑
~p

ε(~p)δn~p (3.142)

which provides the definition ofε(~p) for quasiparticles. LANDAU introduced the
f function which determines the change of the energy of the quasiparticleε(~p)
due to the change in the distribution function:

δε(~p) = ∑
~p′

f
~p~p′

δn
~p′

(3.143)

The LANDAU f -function is a direct consequence of interparticle interaction and,
as we will see, it actually governs collective behavior of the system.
We can now expand the energy-momentum relationship around the most interest-
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ing point, the FERMI momentum:

ε(~p) = µ +~vF(~p−~pF) with (3.144)

µ =
p2

F

2m
+ interaction (3.145)

vF =
pF

m∗
(3.146)

m∗ = m+ interaction (3.147)

Thus the complicated energy-momentum relation is substantially simplified since
only momentap≈ pF are important. As expected, the energy depends only on the
absolute value of the momentum.
If we compare this result with our previous discussions ((3.117) and (3.120)) in
the weakly interacting range

E = E0 +
4π~

2a
m

1
2 ∑

j 6= j ′
∑
~p~p′

n~p jn~p′ j ′ (3.148)

E0 = ∑
~p

∑
j

p2

2m
n~p j (3.149)

we have

ε j(~p) =
p2

2m
+

4π~
2a

m ∑
~p′ j 6= j ′

n
~p′ j ′

=
p2

2m
+

4π~
2a

m ∑
j 6= j ′

n j ′ (3.150)

which means that

µ = ε(pF) =
p2

F

2m
+

4π~
2a

m ∑
j 6= j ′

n j ′ m∗ = m (3.151)

and therefore

∂ε j(p)

∂n~p j

= f
~p j~p′ j ′

=

{
0 j ′ = j
4π~

2a
m j ′ 6= j

(3.152)

in first order in the interaction. If we also consider second order terms we get
rather complicated terms with non trivialf , lengthy expressions andm∗ 6= m.
The effective massm∗ can be measured experimentally e.g. in the specific heat
(cf. (3.35) and (3.13)).

c =
π

2

3
ν(µ)T with (3.153)

ν(µ) =
m∗pF

2π
2
~

3g (3.154)
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In our regime of low temperaturescV = cp and we thus do not have to distinguish
between them.
We now want to calculate the effective massm∗ via the f -function for general
FERMI liquid. The liquid moves with the velocity~v in the laboratory system thus
generates the current

~j = mn~v = ∑
~p j

~pñ~p j (3.155)

The distribution function in the frame of the moving liquid relates to the distribu-
tion function in the laboratory ˜n as follows

ñ~p j = n j (ε(~p)−~p·~v) = n(ε(~p))+ δn~p j (3.156)

δn~p j =
∂n~p j

∂ε

δε δε =−~p·~v+ interaction (3.157)

The distribution function of FERMIons is a step function atT = 0 thus its deriva-
tive is aδ -function. The current now reads

~j = ∑
~p j

~p
(

n j(ε(~p))+ δn~p j

)
= ∑

~p j

~p
∂n~p j

∂ε

δε(~p) (3.158)

The first term in the summation vanishes because the filled FERMI sphere is rota-
tional invariant and the summation runs over all momenta.

∂n~p j

∂ε

=−δ (ε(p)−µ) =− 1
vF

δ (p− pF) (3.159)

~j = ∑
~p j

~p

(
− 1

vF
δ (p− pF)

)
δ (ε(~p)) (3.160)

=− 1
vF

p2
F

(2π~)3 pFg4π

∫
dΩ
4π

~eδε(pF~e) (3.161)

=− g
vF

p3
F

2π
2
~

3

∫
dΩ
4π

~eδε(pF~e) =− 3
vF

n
∫

dΩ
4π

~eδε(pF~e) (3.162)

In (3.162) we used (3.141). Looking at the shift in energy assumingpF( j)≡ pF∀ j
we get

δε(~p) =−~p·~v+ ∑
~p′ j ′

f
~p j~p′ j ′

δn
~p′ j ′

(3.163)

=−~p·~v+ ∑
~p′ j ′

f
~p j~p′ j ′

∂n
~p′ j ′

∂ε

δε(~p′) (3.164)
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=−~p·~v− 1
vF

∑
j ′

∫
d3p′

(2π~)3 f
~p j~p′ j ′

δ (p− pF)δε(~p′) (3.165)

=−~p·~v− 1
vF

p2
F

(2π~)34π︸ ︷︷ ︸
(3.146) and (3.154)

∑
j ′

∫
dΩ′

4π

f
~p jpF~e

′ j ′
δε(pF~e

′) (3.166)

=−~p·~v−
∫

dΩ′

4π
∑
j ′

ν j ′(µ) f
~p jpF~e

′ j ′
δε(pF~e

′) (3.167)

This is interesting only for|~p|= |~pF| and we can write using~pF = pF~e

δε(pF~e) =−pF~e·~v−
∫

dΩ′

4π

F(~e~e′)δε(pF~e
′) with (3.168)

F(~e·~e′) = ∑
j ′

ν j ′(µ) f
pF~e jpF~e

′ j ′
(3.169)

=
∞

∑
l=0

(2l +1)Fl Pl (~e·~e
′) (3.170)

HerePl are the LEGENDRE-Polynomials.
To solve this we make the ansatz

δε(pF~e) = ApF~e·~v A= const (3.171)

A~e·~v =−~e·~v−A
∫

dΩ′

4π

∞

∑
l=0

(2l +1)Fl Pl (~e·~e
′) ~e′ ·~v︸︷︷︸

P1(~e′·~v)

(3.172)

=−~e·~v−AF1~e·~v (3.173)

A =− 1
1+F1

δε(pF~e) =−
pF~e·~v
1+F1

(3.174)

Thus the current becomes

~j =− 3
vF

n

[
−

pF

1+F1

]∫
dΩ
4π

~e(~e·~v) (3.175)

=
3
vF

n
pF

1+F1

1
3
~v = n

m∗

1+F1
~v (3.176)

⇒ m∗ = m(1+F1) with
∫

dΩ
4π

~ei~ej =
1
3

δi j (3.177)

whereF1 is usually positive. The value ofF1 has to be derived from an appropriate
model or from measurement. Only for very few systems – e.g. FERMI gases –
direct calculation is possible.
We now want to discuss some non trivial examples.
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3.4.1 Zero Sound

Using a semi-classical approach we can describe small density fluctuationsδn j�
n around the ground state (equilibrium) as

n j(~p,~r, t) = n j(~p)+ δn j(~p,~r, t). (3.178)

The kinetic equation forn j(~p,~r, t) reads

∂n j

∂ t
+~v∇rn j +(−∇rε j)∇~pn j = Icoll→ 0 (3.179)

where the collisional term vanishes forT→ 0 becauseτ ∼ T−2→∞ which corre-
sponds to the so called collisionless regime,ωτ � 1, whereω is a characteristic
frequency. Therefore the kinetic equation in this regime is

∂n j

∂ t
+~v∇rn j −∇rε j∇~pn j = 0. (3.180)

The first two terms describe the ballistic motion of particles while the last term acts
as a non trivial collective force. This equation has to be solved self-consistently
because small fluctuations of density generates the force which in turn changes
the density and so on. But first we want to rewrite the equation

∇rε j = ∇r

ε(p)+ ∑
~p′ j ′

f
~p j~p′ j ′

δn
~p′ j ′

= ∑
~p′ j ′

f
~p j~p′ j ′

∇rδn
~p′ j ′

(3.181)

∂δn j

∂ t
+~v∇rδn j −∑

~p′ j ′
f
~p j~p′ j ′

(−δ (p− pF))(~e∇r)δn
~p′ j ′

= 0 (3.182)

∂δn~p j

∂ t
+~v∇rδn~p j + δ (p− pF) ∑

~p′ j ′
f
pF~e j~p′ j ′

(~e∇r)δn
~p′ j ′

= 0. (3.183)

Here we used

∂n(p)
∂~p

=
∂n
∂ε

∂ε

∂~p
=− 1

vF
δ (p− pF)~vF =−~eδ (p− pF). (3.184)

To solve this, we choose the ansatz

δn~p j = δ (p− pF)χ(~e)ei(~k·~r−ωt). (3.185)
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Inserting this into (3.183) we get

0 = (−iω + i~k ·~v)χ(~e)+

∑
~p′ j ′

f
pF~e j~p′ j ′

i
(
~e·~k

)
δ (p− pF)χ(~e′) (3.186)

(ω−kvF)χ(~e) =~k ·~e∑
~p′ j ′

f
pF~e j~p′ j ′

δ (p− pF)χ(~e′) (3.187)

=~k ·~e∑
j ′

v j ′(µ)vF

∫
dΩ′

4π

χ(~e′) f
pF~e jpF~e

′ j ′
(3.188)

=~k ·~e
∫

dΩ′

4π

F(~e·~e′)χ(~e′)vF (3.189)

χ(~e) =
vF
~k ·~e

ω−vF
~k ·~e

∫
dΩ′

4π

F(~e·~e′)χ(~e′). (3.190)

This is difficult to solve. We assume the simplest case, i.e.

F(~e·~e′) = F0 (3.191)

and consider all further deviations as higher order terms. This leads to

χ(~e) =
vF
~k ·~e

ω−vF
~k ·~e

F0

∫
dΩ′

4π

χ(~e′) (3.192)

=~χ
vF
~k ·~e

ω−vF
~k ·~e

. (3.193)

If we defineω = vFkswith s=const andz= cos(~k ·~e′) and integrate both sides of
(3.192) overdΩ

4π
we get

1 = F0

∫
dΩ
4π

vF
~k ·~e

ω−vF
~k ·~e

(3.194)

= F0

∫ 1

−1

dz
2

z
s−z

=
F0

2

∫ 1

−1
dz

{
−1− s

z−s

}
(3.195)

= F0

{
−1− s

2
ln

[
(s−1)
s+1

]}
(3.196)

⇔ 1
F0

+1 =
s
2

ln

[
1+s
|1−s|

]
. (3.197)

If 0 < F0� 1 the left side became huge therefores has to be close to 1:

s= 1+ ε ε � 1 (3.198)
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which leads to
1
2

ln

(
2
ε

)
=

1
F0

+1 (3.199)

⇒ ε =
2
e2e
− 2

F0 (3.200)

This is a collective mode in a degenerated collisionless regime (zero sound) with
the velocity

c0 = vF

(
1+

2
e2e
− 2

F0

)
≈ vF (3.201)

compared to sound in the hydrodynamic regime:

c2
1 =

∂p

∂ρ

=
1
m

∂p

∂n
=

1
m

∂

∂n

2
3

n
3
5

εF︸ ︷︷ ︸
E

 (3.202)

=
1
m

∂

∂n

2
5

n
1

2m

(
6π

2
~

3

g
n

) 2
3

=
1
m

5
3

1
5

1
m

(
6π

2
~

3

g
n

) 2
3

(3.203)

=
1
3

( pF

m

)2
=

v2
F

3
⇒ c1 =

vF√
3

(3.204)

This is ordinary hydrodynamic sound.
If F0 was negatives became a complex number with real and imaginary parts
being of the same order. Hence, in this case the collective mode is overdamped
and of no interest.

3.5 Bardeen-Cooper-Shieffer-Theory

3.5.1 General treatment

If we consider two FERMIons in vacuum we have a simple quantum mechanical
problem. We use the frame of reference where the center of mass is at rest:

~P = ~p1 +~p2 = 0 (3.205)

Here we can write the SCHRÖDINGERequation as{
− ~

2

2m

(
∇2

1 + ∇2
2

)
+UI

(
~r1−~r2

)}
ψ(~r1,~r2) = Eψ(~r1,~r2) (3.206)

ψ(~r1,~r2) = ∑
~p

c~pei
~p(~r1−~r2)
~ (3.207)
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i.e. we decompose the wave function into plane waves. Inserting this decomposi-
tion we get the SCHRÖDINGERequation in momentum space

(ε1 + ε2)c~p +∑
~p′

UI(~p−~p
′)c

~p′
= Ec~p (3.208)

where

ε1 = ε2 =
p2

2m
= εp (3.209)

since both particles are identical. Rewriting the SCHRÖDINGER equation once
more we have

(E−2εp)c~p = ∑
~p′

UI(~p−~p
′)c

~p′
or (3.210)

c~p =
1

E−2εp
∑
~p′

UI(~p−~p
′)c

~p′
(3.211)

This discussion is still exact. Now we use a model for the interatomic potential

UI(~p−~p
′) =

{
V0 0≤ εp,εp′ ≤ ω̄

0 otherwise
(3.212)

In ordinary space this expression looks rather strange.
Using this model we have

c~p =
1

E−2εp
Θ(ω̄− εp)V0

˜∑
~p′

c
~p′

(3.213)

The tilde denotes that the sum obeys the constraint

ε
′
p≤ ω̄ (3.214)

To solve this expression, we sum over all coefficients

˜∑
~p

c~p = V0
˜∑
~p

1
E−2εp

˜∑
~p′

c
~p′

(3.215)

⇔ 1 = V0
˜∑
~p

1
E−2εp

(3.216)

Since we are looking at an attractive interaction and more specifically for bound
states we have

V0 =−|V0| E =−2∆ (3.217)
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where∆ is the binding energy per particle. Using this we have

1 =
1
2
|V0|

˜∑
~p

1
∆ + εp

(3.218)

=
1
2
|V0|

∫
ω̄

0
dε ν(ε)

1
∆ + ε

(3.219)

=
1
2
|V0|

∫
ω̄

0
dε

m
√

2m
2π

2
~

3

√
ε

1
∆ + ε

(3.220)

=
1
2
|V0|

m
√

2m
2π

2
~

3

∫ √
ω̄

0
dx

2x2

∆ +x2 (3.221)

= |V0|
m
√

2m
2π

2
~

3

∫ √
ω̄

0
dx

(
1−∆

1
∆ +x2

)
(3.222)

= |V0|
m
√

2m
2π

2
~

3

{√
ω̄− ∆√

∆
arctan

(√
ω̄√
∆

)}
(3.223)

≈ |V0|
m
√

2m
2π

2
~

3

{√
ω̄− π

2

√
∆
}

(3.224)

= |V0|ν(ω̄)

{
1− π

2

√
∆
ω̄

}
(3.225)

Here we assumed that∆� ω̄ and thus the arcus tangent can be approximated as
π

2 . Solving this we have√
∆
ω̄

=
2
π

{
1− 1
|V0|ν(εF)

}
> 0 (3.226)

Therefore we have threshold (i.e. a minimal|V0|) before a bound state appears.
Now we want to consider two FERMIons on top of a filled and frozen FERMI

sphere. Frozen means that we will not consider interactions of the particles inside
the FERMI sphere with our two extra particles. In this case we have

εp,εp′ ≥ εF (3.227)

c~p =
1

E−2εp
∑

~p′≥~pF

UI

(
~p−~p′

)
cp′ (3.228)

We assume for the potential

UI(~p−~p
′) =

{
V0 εF≤ εp,εp′ ≤ εF + ω̄

0 otherwise
(3.229)
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Now we define

ξp = εp− εF≥ 0 (3.230)

and note that the energy of the ground state is now

E = 2εF−2∆ (3.231)

where∆ is the binding energy per particle.
Again we can rewrite the SCHRÖDINGERequation in our case as

c~p =
Θ(ω̄−ξp)
2(∆ + ξp)

|V0|
˜∑
~p′

c
~p′

(3.232)

The tilde denotesξp′ ≤ ω̄.
Using the same method with∆� ω̄ � εF as before we get

1 =
1
2
|V0|

˜∑
~p

1
∆ + ξp

=
1
2
|V0|

∫
ω̄

0
dξ ν(εF + ξp)

1
∆ + ξp

(3.233)

≈ 1
2
|V0|ν(εF) ln

(
∆ + ω̄

∆

)
≈ 1

2
|V0|ν(εF) ln

(
ω̄

∆

)
(3.234)

In the last step we approximated again∆� ω̄. solving this for the binding energy
∆ we see, that there isalwaysa solution regardless of the strength of the potential

∆ = ω̄e
− 2
|V0|ν(εF) COOPER1956 (3.235)

This is of course a toy model. The solution including the interaction between all
particles – not only between extra ones – has basically the same form except the
factor 2 in the enumerator of the exponent is replaced by 1.
This result means that FERMIons with~p and~p′ become correlated, they form a
"COOPER-Pair".
The shift in energy can be approximated as

vF∆p∼ ∆⇔ ∆p∼ ∆
vF

(3.236)

If we denote the size of the correlation asξ we can approximate

ξ ∼ ~

∆p
∼ ~

∆
vF∼

~

pF

εF

∆
� ~

pF
(3.237)

This means the the size of the correlation is much larger than the mean interparti-
cle distance. Therefore a mean field theory can be applied for this system.



74 CHAPTER 3. FERMIONS

It turns out that the region of temperaturesδT aroundTC where fluctuations be-
come important can be estimated as

δT ∼ TC

(
∆
εF

)4

(3.238)

This is so small that it cannot be found experimentally.

3.5.2 BCS Hamiltonian

The goal is to modify the HAMILTON ian (3.111) in such a way that the BCS
relevant terms are clearly visible while other terms (which are not relevant in this
context) are put aside. We assume two types of FERMIonswhich we will denote
as+ and−. In this case the interaction part of (3.111) can be written as3

Ĥint = V0∑
pi

′
a†

p3+a†
p4−

ap2−
ap1+ (3.239)

We are not interested here in the FERMI-liquid type of renormalisations due to the
interaction but only for the terms responsible for the COOPERcoupling. Since we
neglect all other terms we can write

Ĥint =−∑
p

{
∆∗a−p−ap+ + ∆a†

p+a†
p−

}
+other terms (3.240)

We approximate the operator∆ by its mean field value and note, that the first term
destroys a COOPERpair while the second term creates a COOPERpair. ∆ has to
be calculated as

∆ =−|V0|∑
p
〈a−p−ap+〉 (3.241)

This is a HARTREE-FOCK type of equation, i.e. (3.240) and (3.241) have to be
solved self-consistently.
We can choose∆ real since a space independent phase would be irrelevant and a
space dependent phase would cause a probability flow but we are looking for a
stationary ground state solution. Thus we have

Ĥeff = ∑
p j

ξpa
†
p jap j−∆∑

p

{
a−p−ap+ +a†

p+a†
−p−

}
(3.242)

ξp =
p2

2m
−µ µ =

p2
F

2m
(3.243)

3for simplicity we now always writep instead of~p
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This case is different to the one encountered in section (2.3) because here we have
to calculateĤ and∆ simultaneously.
Again we can make a BOGOLYUBOV transformation

ap j = upãp j +sign( j)vpã
†
−p− j =

{
ap+ = upãp+ +vpã

†
−p− j = +

ap− = upãp−−vpã
†
−p+ j =−

(3.244)

The transformation has to be canonical, thus{
ãp j, ãp′ j ′

}
=
{

ã†
p j, ã

†
p′ j ′

}
= 0 (3.245){

ãp j, ã
†
p′ j ′

}
= δpp′δ j j ′ (3.246)

We again assume the most simple arrangement, i.e.

u∗p = up v∗p = vp (3.247)

and insert the new operators in the FERMI anticommutating relations:{
ap j,ap′ j ′

}
=
{
a†

p j,a
†
p′ j ′

}
= 0 (3.248){

ap j,a
†
p′ j ′

}
=
{

upãp j +sign( j)vpã−p− j ,

upã
†
p′ j ′ +sign( j ′)vp′ ã−p′− j ′

}
(3.249)

= upup′δpp′δ j j ′ +sign( j)sign( j ′)vpvp′δpp′δ j j ′ (3.250)

= δpp′δ j j ′(u
2
p +v2

p) (3.251)

Thus we have the requirement that

u2
p +v2

p = 1, (3.252)

which means thatup andvp have to be expressed as sine and cosine.
Finally the transformed HAMILTON ian has to have the following form

Ĥeff = E0 +∑
p j

εpã
†
p jãp j (3.253)

The coefficientsup andvp can be calculated from the dynamics of the system. To
this end we calculate[

Ĥeff, ãp j

]
= ∑

p′ j ′
εp′

(
ã†

p′ j ′ ãp′ j ′ ãp j− ãp jã
†
p′ j ′ ãp′ j ′

)
(3.254)

=−∑
p′ j ′

εp′

(
ã†

p′ j ′ ãp j + ãp jã
†
p′ j ′

)
︸ ︷︷ ︸

=δ
pp′δ j j ′

ãp′ j ′ (3.255)

=−εpãp j (3.256)
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The other commutator we do not need to calculate because[
Ĥeff, ã

†
p j

]
=−

([
Ĥeff, ãp j

])†
= εpã

†
p j (3.257)

Now let’s use this to calculate the commutator[
Ĥeff,ap j

]
=
[
Ĥeff,upãp j +sign( j)vpã

†
−p− j

]
(3.258)

= up(−εp)ãp j +sign( j)vpεpã
†
−p− j (3.259)

!=−ξpap j−∆∑
p′

(
a†

p′+a†
−p′−ap j−ap ja

†
p′+a†

−p′−

)
(3.260)

=−ξpap j−∆∑
p′

{
a†

p′+a†
−p′−ap j

−
(

δpp′δ j+−a†
p′+ap j

)
a†
−p′−

}
(3.261)

=−ξpap j−∆∑
p′

{
a†

p′+a†
−p′−ap j

−δpp′δ j+a†
−p′−+a†

p′+

(
δp−p′δ j−−a†

−p′−ap j

)}
(3.262)

=−ξpap j + ∆δ j+a†
−p−−∆δ j−a†

−p+ (3.263)

=−ξpap j + ∆sign( j)a†
−p− j (3.264)

=−ξp

(
upãp j +sign( j)vpã

†
−p− j

)
+ ∆sign( j)

(
upã

†
−p− j +sign(− j)vpãp j

)
(3.265)

Conferring to (3.259) we get the BOGOLYUBOV-DE GENNESequations:

−εpup =−ξpup−∆vp (3.266)

εpvp =−ξpvp + ∆up (3.267)

which are solved by

εp =
√

∆2 + ξ
2
p (3.268)

u2
p =

1
2

(
1+

ξp

εp

)
v2

p =
1
2

(
1−

ξp

εp

)
(3.269)

The solution is very similar to the BOSEcase.
It follows from (3.268) thatεp is always positive,εp≥ ∆> 0.
The pairing energy is∆� εF which causes the edges of the FERMI sphere to
smear out. The BCS gap in the spectrum can be experimentally observed because
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Figure 3.5: Spectrum of FERMIons with COOPERpairing (left) and plot ofu and
v as a function ofp

the medium is transparent for all external perturbations with frequencyω < 2∆
which couple to single particle excitations.
We now want to calculate∆:

∆ = |V0|∑
p
〈
(

upã−p−−vpã
†
p+

)(
upãp+ +vpã

†
−p−

)
〉 (3.270)

= |V0|∑
p

upvp

(
〈ã−p−ã†

−p−〉−〈ã
†
p+ãp+〉

)
(3.271)

= |V0|∑
p

upvp(1−2np) (3.272)

= |V0|∑
p

1
2

√
ε

2
p−ξ

2
p

εp
tanh

(
εp

2T

)
= ∆|V0|∑

p

tanh
(

εp
2T

)
2εp

(3.273)

where we used

np = 〈ã†
p+ãp+〉= 〈ã†

−p−ã−p−〉=
1

exp
(

εp
T

)
+1

(3.274)

which is the number of particles involved. Thus we have

1 = |V0|∑
p

tanh
(

εp
2T

)
2εp

εp =
√

∆2 + ξ
2
p (3.275)

This equation determines∆(T). We are mainly interested in the gap nearTC, i.e.

1 = |V0|∑
p

tanh
(

ξp
2TC

)
2ξp

(3.276)
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which might become problematic forξp→ 0. To solve this, we have to use the
scattering length analogous to (3.125) and rewrite the expression as

1 =
4π~

2|a|
m ∑

p

 tanh
[

ξp
2TC

]
2ξp

− 1

2 p2

2m

 (3.277)

=
4π~

2|a|
m

∫ ∞

−εF

dξ ν(ξ + εF)

 tanh
[

ξ

2TC

]
2ξp

− 1
2(ξ + εF)

 (3.278)

=
4π~

2|a|
m

m
2π

2
~

3

∫ ∞

0
dp p2

 tanh
[

p2−p2
F

2m2TC

]
p2− p2

F
− 1

p2

 (3.279)

= λ

∫ ∞

0
dxx2

{
tanh

[
α(x2−1)

]
x2−1

− 1
x2

}
(3.280)

= λ

∫ ∞

0
dx

{
tanh

[
α(x2−1)

]
−1+

tanh
[
α(x2−1)

]
x2−1

}
(3.281)

= λ

{
x
(
tanh

[
α(x2−1)

]
−1
)∣∣∞

0 −
∫

dxx
2αx

cosh2[. . . ]

+
1
2

ln

∣∣∣∣x−1
x+1

∣∣∣∣ tanh(α(x2−1))
∣∣∞
0

−
∫ ∞

0
dx

1
2

ln

∣∣∣∣x−1
x+1

∣∣∣∣ 2αx

cosh2(α[. . . ])

}
. (3.282)

Here we note, that (3.278) converges. In (3.280) we substitutedp = pFx and used
the definition of the gas parameter

λ =
4π~

2|a|
m

ν(εF) =
2|a|pF

π~

(3.283)

The parameterα is defined as

α =
εF

2TC
� 1 (3.284)

In the last step, we integrated by part and noted, that the main contribution to the
integral comes from the Regime

|x2−1| ∼ 1
α

⇒ x≈ 1. (3.285)
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Using this, we have

1 = λ

{
− tanh(2α(x−1))|∞0

−
∫ ∞

0
dx

1
2

ln

∣∣∣∣∣α
(
x2−1

)
α(x+1)2

∣∣∣∣∣ 2αx

cosh2(α(x2−1))

}
(3.286)

= λ

(−2)− 1
2

∫ ∞

−∞
dy

ln
(
|y|
4α

)
cosh2(y)

 (3.287)

= λ

{
−2−

∫ ∞

0
dy

ln(y)− ln(4α)
cosh2(y)

}
(3.288)

= λ

{
−2+ ln

(
2εF

TC

)
−
∫ ∞

0
dy

ln(y)
cosh2(y)

}
(3.289)

= λ

{
ln

2εF

TC
−2− ln

(
π

4γ

)}
= λ ln

{
8γεF

πTC
e−2
}

(3.290)

Hereγ ≈ 1.78 is the EULER constant. Solving forTC (when∆ = 0) we get

TC =
8γe−2

π

εFe−
1
λ = 0.61εFe−

1
λ (3.291)

Now we want to calculate∆ = ∆(T). First we look atT ≈ TC i.e.

TC−T

TC
� 1 (3.292)

We expect∆(T)� TC. Therefore we can expand (3.268)

εp≈ |ξp|+
∆2

2|ξp|
(3.293)

similar we expand (3.277)

1 =
4π~

2|a|
m ∑

p


(

1+
∆2

2|ξp|
∂

∂ |ξp|

) tanh
(
|ξp|
2T

)
2|ξp|

− 1

2 p2

2m

 (3.294)

=
4π~

2|a|
m

∫ ∞

−εF

dξ ν(ξ + εF)
(

1+
∆2

2|ξp|
∂

∂ |ξp|

) tanh
(
|ξp|
2T

)
2|ξp|

− 1

2 p2

2m

 (3.295)
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=
4π~

2|a|
m

{
ν(εF) ln

(
8γe−2

εF

πT

)

+
∆2

2

∫ ∞

−εF

dξ ν(ξ + εF)
1
ξ

∂

∂ξ

tanh
(

ξ

2T

)
2ξ

}
(3.296)

= λ

{
ln

(
8γe−2

εF

πTC

)
+ ln

(
TC

T

)}

+
4π~

2|a|
m

∆2

2
ν(εF)

∫ ∞

0
dξ

1
ξ

∂

∂ξ

tanh
(

ξ

2T

)
ξ

(3.297)

= 1+ λ

{
ln

(
TC

T

)
+

∆2

2T2

∫ ∞

0
dx

1
x

∂

∂x

tanh
(

x
2

)
x

}
(3.298)

In (3.296) we used that the integrand is proportional to|ξ |−3 for large|ξ | and that
we can replace the lower integration boundary by−∞ because the integrand is
therefore strongly localized around 0. In the last step we substitutedξ = Tx.
To calculate the last integral, we use the expansion of the hyperbolic tangent:

tanh
(x

2

)
= 4x

∞

∑
n=0

1
π

2(2n+1)2 +x2 (3.299)

If we use (3.299) to calculate the last addend of (3.298) we get

4
∫ ∞

0
dx

1
x

∂

∂x

∞

∑
n=0

1
π

2(2n+1)2 +x2 (3.300)

= 4
∫ ∞

0
dx

1
x

∞

∑
n=0

−2x
(π

2(2n+1)2 +x2)2 (3.301)

=−8
∞

∑
n=0

1
π

3(2n+1)3

∫ ∞

0

dy
(1+y2)2 (3.302)

=− 8
π

3

(
1− 1

8

)
ξ (3)

∫ π

2

0

dφ

cos2(φ)
cos4(φ) (3.303)

=− 8
π

3

7
8

π

2
1
2

ξ (3) =−7ξ (3)
4π

2 (3.304)

We used the substitutionsx = π(2n+1)+y andy= tan(φ). The sum is calculated
analougsly to (3.24).
Furthermore we are interested at temperaturesT aroundTC (3.292) so we can
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approximate (3.298) as

ln

(
TC

T

)
=− ln

(
1−

TC−T

TC

)
≈

TC−T

TC
(3.305)

=− ∆2

2T2
C

(−)7ξ (3)
4π

2 =
∆2

T2
C

7ξ (3)
8π

2 (3.306)

Thus we have

∆(T) =

√
8π

2

7ξ (3)︸ ︷︷ ︸
≈3.06

TC

√
TC−T

TC
(3.307)

The pairing energy grows rather rapidly if temperature is lowered. Now we want
to look at the other extreme, i.e.∆(T = 0) ≡ ∆0. If we subtract (3.275) atT = 0
from (3.276)

m
4π~

2|a|
= ∑

p

{
1

2εp
− 1

p2

m

}
(3.308)

m
4π~

2|a|
= ∑

p

 tanh
(

ξp
2TC

)
2ξp

− 1
p2

m

 (3.309)

we get

0 = ∑
p

 1
2εp
−

tanh
(

ξp
2TC

)
2ξp

 (3.310)

=
1
2

∫ ∞

−εF

dξ ν(ξ + εF)

 1√
∆2

0 + ξ
2
−

tanh
(

ξ

2TC

)
ξ

 (3.311)

≈ 1
2

ν(εF)2
∫ ∞

0
dξ

 1√
∆2

0 + ξ
2
−

tanh
(

ξ

2TC

)
ξ

 (3.312)

= ν(εF)
∫ ∞

0
dx


1√

x2 +
(

∆0
2TC

)2
− tanh(x)

x

 (3.313)
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= ν(εF)
{ln

x+

√
x2 +

(
∆0

2TC

)2
− ln(x) tanh(x)

∣∣∣∣∣∣
∞

0

+
∫

dx
ln(x)

cos2(x)

}
(3.314)

= ν(εF)
{

ln(2)− ln

(
∆0

2TC

)
+ ln

(
π

4γ

)}
(3.315)

= ν(εF) ln

(
TCπ

∆0γ

)
(3.316)

In (3.312) we again used that{. . .} behaves as|ξ |−3 for |ξ | → ∞ and we again
extend the integration from−εF to −∞. Then we substitutedξ = 2TCx. After
partial integration we retained the integral (3.289) which solution we inserted.
Therefore we have

∆0 =
π

γ

TC≈ 1.76TC (3.317)

Figure 3.6: Pairing gap as function of temperature

It is important to note, that this is a single particle spectrum, i.e. no collective
modes are considered. So if an external field, which actsonly on single particles,
acts with an amplitude less than∆ no excitations occur. The question remains
whether other types of excitations with amplitude less than∆ are possible.
The GOLDSTONE theorem (page 33) ensures that at least one branch of gapless
excitations exists because the continuous (gauge) symmetry is spontaneously bro-
ken in a superfluid phase: the energy (HAMILTON ian) is invariant under the gauge
transformationψ → eiφ

ψ with a constantφ , E(eiφ
ψ) = E(ψ), while the ground

state and, as a result, anomalous correlators are not. For example,

〈(eiφ
ψ)(eiφ

ψ)〉= e2iφ 〈ψψ〉 6= 〈ψψ〉 6= 0. (3.318)
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Since we have

εp
p→0−−→ 0 (3.319)

the choice of a phase breaks the symmetry. So if we consider now a phase which
varies slowly in space and time, i.e. the gap is of the form

∆0→ ∆0e2iφ(~r,t) (3.320)

we describe collective modes. To calculate∆ we have to redo the previous calcu-
lation except for the fact that∆ is no longer real. The HAMILTON ian is now

Ĥ = ∑
j

∫
d3r ψ̂ j

{
− ~

2

2m
∇2 +U(~r)−µ

}
ψ j

−
∫

d3r
{

∆∗ψ̂−ψ̂+ + ∆ψ̂
†
+ψ̂

†
−

}
(3.321)

Here the first addend will be called̂H0.
Once more we use a time dependent BOGOLYUBOV-DE GENNESequation (i.e. a
canonical transformation):

ψ̂ j(~r, t) = ∑
ν

{
u

ν
(~r, t)ã

ν j +sign( j)v∗j (~r, t)ã
†
ν− j

}
(3.322)

The calculation is similar to the BOSE case and it is therefore not repeated here.
It can be found in the literature. The results are

i~
∂u

ν

∂ t
= (Ĥ0−µ)u

ν
+ ∆v

ν
(3.323)

i~
∂v

ν

∂ t
=−(Ĥ0−µ)v

ν
+ ∆∗u

ν
(3.324)

We assume that the phase is switched on adiabaticly, i.e.

∆(~r, t) t→−∞−−−→ ∆0 (3.325)

This way, the solutions take the form

u
ν
(~r, t→−∞) = u0

ν
e−iε

ν
t (3.326)

v
ν
(~r, t→−∞) = v0

ν
e−iε

ν
t (3.327)

Using this (3.323) and (3.324) read

ε
ν
u(0)

ν
= (Ĥ0−µ)u(0)

ν
+ ∆0v(0)

ν
(3.328)

ε
ν
v(0)

ν
= (Ĥ0−µ)v(0)

ν
+ ∆0u(0)

ν
(3.329)
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Thusν is clear att =−∞. Now we have to solve self-consistently

∆(~r, t) = |V0|〈ψ̂−(~r, t)ψ̂+(~r, t)〉 (3.330)

= |V0|∑
ν

u
ν
(~r, t)u∗

ν
(~r, t) tanh

(
ε

ν

2T

)
(3.331)

where we took only the leading term in the fluctuations.
The probability current atT = 0 reads now

~j =− i~
2m∑

j
〈ψ̂†

j ∇ψ̂ j −∇ψ̂
†
j ψ̂ j〉 (3.332)

=− i~
2m∑

j
∑

ν1ν2

(v
ν1

∇v∗
ν2
−∇v

ν1
v∗

ν2
)〈ã

ν1− j ã
†
ν2− j〉︸ ︷︷ ︸

δ
ν1ν2

(3.333)

=− i~
2m∑

j
∑
ν

(v
ν
∇v∗

ν
−∇v

ν
v∗

ν
) (3.334)

The same way we calculate

n = ∑
j
∑
ν

|v
ν
|2 (3.335)

If we define new functions

u
ν

= eiφ ū
ν

v
ν

= e−iφ v̄
ν

(3.336)

which obey the same initial conditions (becauseφ vanishes att = −∞) (3.323)
and (3.324) simplify(

i~
∂

∂ t
−~φ̇

)
ū

ν
=
(
− ~

2

2m
(∇ + i∇φ)2−µ

)
ū

ν
+ ∆0v̄

ν
(3.337)(

i~
∂

∂ t
+~φ̇

)
v̄

ν
=−

(
− ~

2

2m
(∇− i∇φ)2−µ

)
v̄

ν
+ ∆0ū

ν
(3.338)

We have now

i~
∂ ū
∂ t

=
(
− ~

2

2m
∇2−µ

)
ū

ν
+ ∆0v̄

ν

+
{
~φ̇ +

~
2

2m
(∇φ)2− i

~
2

m
∇φ∇− i

~
2

2m
∇2

φ

}
ū

ν
(3.339)

i~
∂ v̄
∂ t

=−
(
− ~

2

2m
∇2−µ

)
v̄

ν
+ ∆0ū

ν

+
{
−~φ̇ − ~

2

2m
(∇φ)2− i

~
2

m
∇φ∇− i

~
2

2m
∇2

φ

}
v̄

ν
(3.340)
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If we regard{. . .} as perturbation we can apply time dependent perturbation the-
ory here. We We will not present detailed calculations here, rather make some
comments.
When on the basis of the BOGOLYUBOV-DE GENNES equations (...) we con-
sider single-particle excitations, we restrict ourself only to solutions with positive
eigenvaluesε

ν
> 0. But those are only half of all possible solutions. The other

half contains solutions with negative eigenvaluesε
ν
< 0. The latter can easily be

constructed from the former. Namely, if(u(0)
ν
,v(0)

ν
) is a solution withε

ν
> 0, then,

as can be easily checked,(v(0)∗
ν

,−u(0)∗
ν

) is a solution with the negative eigenvalue
ε

ν
< 0. Together they form a complete set of solutions and, therefore, they both

have to be used in studying the perturbed BOGOLYUBOV-DE GENNESequations.
In this way we get the answer

ū
ν

= u(0)
ν

e−iε
ν
t (1+derivatives ofφ) (3.341)

v̄
ν

= v(0)
ν

e−iε
ν
t (1+derivatives ofφ) (3.342)

After some calculations the current can be written as

~j =− i~
2m∑

ν

{
2i∇φ |v(0)

ν
|2 +O

(
∇φ

∆0
,

φ̇

∆0

)}
(3.343)

=
~

m
∇φ ∑

ν

|v(0)
ν
|2 = n0

~

m
∇φ = n0~vs (3.344)

vs =− ~
m

∇φ (3.345)

This result is rather unexpected. It is not obvious that the constantn0 from the
homogeneous case is the coefficient and not e.g. a fraction ofn0. As can be

Figure 3.7: Schematic probability flow in BCS

seen in figure (3.7) most particles inside the FERMI sphere are not affected by the
probability flow.



86 CHAPTER 3. FERMIONS

Now n and~vs have to be solved self-consistently to get an equation forφ . Here
we want to get the solution more easily:

E(φ ,n) =
∫

d3r

{
1
2

mn~v2
s +E(n)−µn

}
(3.346)

E(n) = Eon(n)+Eint +Ecooper p. (3.347)

= n
3
5

εF +O(a)+Ecooper p.︸ ︷︷ ︸
∼e−

2
λ

(3.348)

HereE0n describes free particles in the normal phase. We can estimate the pairing
energy as energy gain per pair times number of particles affected, i.e.

Ecooper p.∼ (−∆)ν(εF)∆∼−g∆2mpF

~
3 =−g∆2 m

p2
F

p3
F

~
3 (3.349)

∼−n
∆2

εF
∼−nεF

(
∆
εF

)2

(3.350)

Figure 3.8: BCS gap

Again we note that we consider only slowly varying phase.

If we look at (3.346) with terms up to second order in phase andδn, remembering

n0 :
∂E
∂n

= µ (3.351)
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we get

E(φ ,n) =
∫

d3r
{1

2
mn0

(
~

m
∇φ

)2

+E0(n0)+ linear︸ ︷︷ ︸
=0

+
1
2

∂
2E

∂n2

∣∣∣∣
n0

(δn)2
}

(3.352)

= E0(n0)V +
1
2

∫
d3r

{
n0
~

2

m
(∇φ)2 +

∂
2E

∂n2

∣∣∣∣
n0

δn2

}
(3.353)

Here we remember thatv∼ ∇φ and thereforev2
s already second order so we can

usen = n0.
If we look at this from a quantum mechanical point of view,δn becomes an oper-
ator. It has to obey [

φ(~r),δn(~r ′)
]

=−iδ
(
~r−~r ′

)
(3.354)

and all other commutators have to vanish.
We have

δ ṅ =
i
~

[
Ê,δn

]
=

1
2

i
~

n0
~

2

m
(−2∇2

φ)(−i) (3.355)

=−n0
~

m
∇2

φ =−∇
(

n0
~

m
∇φ

)
=−∇~j (3.356)

that corresponds to the continuity equation. On the other hand

φ̇ =
i
~

[
Ê,φ

]
=

1
2

i
~

∂
2E

∂n2 2δni =−1
~

∂
2E

∂n2 δn, (3.357)

therefore,

δ n̈ =−n0
~

m
∇2

φ̇ =
n0

m
∂

2E
∂n2 ∇2

δn and (3.358)

φ̈ =
n0

m
∂

2E
∂n2 ∇2

φ . (3.359)

Eqn. (3.358) and (3.359) are wave equations with the wave velocity

c2 =
n0

m
∂

2E
∂n2 (3.360)
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Using (3.5) and (3.6) we can calculate the velocity

c2 =
n0

m
∂

2

∂n2
0

n0
3
5

1
2m

(
6π

2
~

3

g
n0

) 2
3

 (3.361)

=
n0

m
1

2m
3
5

(
6π

2
~

3

g

) 2
3

∂
2

∂n2
0

n
5
3
0

(3.362)

=
n0

m
1

2m
3
5

(
6π

2
~

3

g

) 2
3 5

3
2
3

1

n
1
3
0

=
1
3

p2
F

m2 =
v2

F

3
(3.363)

c =
vF√

3
(3.364)

This is caused by density fluctuations and differs from zero sound, it is the same as
the hydrodynamic sound (BOGOLYUBOV-ANDERSONsound). If the fluctuations
couple to density, this GOLDSTONEmode can be excited even if the excitation is
less than∆.

3.6 Andreev reflection

Figure 3.9: Boundary between non superfluid and superfluid region

Suppose we have a situation where the gap∆ is not a constant∆0 but depends on
the coordinatex in such a way that it is zero for negativex (normal phase), then it
increases to its equilibrium value∆0 in the transition region of the widthξ at the
origin x = 0, and is equal to∆0 for positivex (superfluid phase), see fig.(3.9) (this
situation could be realized if a magnetic field is applied to the partx< 0 of the
superfluid sample that destroys the COOPERpairing,).



3.6. ANDREEV REFLECTION 89

If we now have a particle in the normal part of the sample with the energyεF + ε,
whereε <∆0, and momentump> pF along thex-axis (a single-particle excitation
with the energyε and momentump), we would naively expect that it reflects back
from the boundary between normal and superfluid parts of the sample because
there are no available single-particle states with such energyε < ∆0 in the super-
fluid region. However, this is not possible because the change of the momentum
δ p of the particle in the transition region can be estimated as

δ p∼ Ft F ∼
∆0

ξ

t =
ξ

vF
(3.365)

∼
∆0

vF
∼ pF

∆0

εF
� pF (3.366)

but an ordinary reflection requires

∆p|reflection∼ 2pF. (3.367)

So the particle (excitation) cannot be reflected in a normal way and it cannot pen-
etrate either. What happens instead is that the particle picks another one with an
(almost) opposite momentump′ < pF to form a COOPERpair with total momen-
tum p− p′ along thex-axis, and this pair penetrates the superfluid regionx> 0.
As a result, in the normal regionx< 0 one has a hole in the state with momentum
p′ moving backwards with the velocity which is a gradient of the energy of the
excitationεp′ ≈ vF(pF− p′) with the respect to its momentum−~p′ (the hole in the

state~p′ has momentum -~p′).

~vout = ∇−p′εp′ ≈−∇p′(vF(pF− p′))≈ vF~̂p
′
=−vF~ex. (3.368)

(For incoming particle one hasvin ≈∇p(vF(p− pF))≈ vF ·~ex) Therefore, we have
a specific form of a reflection (ANDREEV reflection) where an incoming particle
reflects as a hole and vice versa. Since the hole has an opposite charge, some
interesting effects happen if a magnetic field is applied - the hole travels the path
backwards until it hits the boundary again where it becomes a particle that travels
the same path forward and so on.



Appendix A

General energy-momentum relation

If we have a non interacting gas of particles we can derive a general energy-
momentum relation independent of the statistics involved. We distinguish two
types of particles: those with rest massm and relativistic particles like photons
and phonons.
We consider a box with of volumeV with infinite walls. Particles are described
by plain waves with momenta

pn = ~kn =
nπ

L
i ∼ V −

1
3 n∈N (A.1)

whereL is the length of the box.
For each particle the energy-momentum relation can be stated as

εp =

{
p2

2m ∼ V −
2
3 non relativistic

cp∼ V −
1
3 relativistic

(A.2)

The general statistical definition for pressure is

p =−∂ 〈E〉
∂V

=−∑
p, j

∂εp

∂V
〈np〉 (A.3)

The indexj runs over theg values, e.g. spin projections.
Using (A.2) we can now derive the desired relation

p =

{
2
3

E
V (εp∼ p2)

1
3

E
V (εp∼ p)

(A.4)

This relation is independent of the statistics involved.
This section is based upon [5].

90



Appendix B

Calculation for section 3.3.1

To derive equation (3.123) we first note, that only excitations with two particles
and two holes can be present, i.e. all excited states are of the form

|e〉= a†
p1 j ′a

†
p2 jap3 jap4 j ′|g〉 (B.1)

– where|g〉 is the ground state (filled FERMI sphere) – because otherwise every
term in〈e|Ĥint|g〉 would be zero.
To better distinguish the summations we rewriteĤint of (3.111) as

Ĥint = ∑
q1q2q3q4

′ ∑
k<k′

a†
q4k′a

†
q3kaq1kaq2k′ (B.2)

If we call the denominator of (3.121)α we have

∑
e

∣∣〈e|Ĥint|g〉
∣∣2 = ∑

p1p2p3p4

∑
j< j ′

α (B.3)

∣∣∣∣∣∣∣∣∣ ∑
q1q2q3q4

′ ∑
k<k′
〈g|a†

p4 j ′a
†
p3 jap2 j ap1 j ′a

†
q4k′︸ ︷︷ ︸

δ
j′k′δp1q4

(1−n̂p1
)

a†
q3kaq2kaq1k′|g〉

∣∣∣∣∣∣∣∣∣
2

= ∑
p1p2p3p4

′ ∑
j< j ′

α

∣∣〈g|n̂p4
n̂p3

(1− n̂p2
)(1− n̂p1

)|g〉
∣∣2 (B.4)

= ∑
p1p2p3p4

′ ∑
j< j ′

αn2
p4

n2
p3

(1−np2
)2(1−np1

)2 |〈g|g〉|2︸ ︷︷ ︸
=1

(B.5)

We can drop the squares now becausenpi
∈ {0,1} and therefore(1−npi

) ∈ {0,1}
and hencen2

pi
= npi

and(1−npi
)2 = (1−npi

).
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Appendix C

Lifetime and Fermis Golden Rule

In section (3.3.2) FERMIs Golden Rule was used. To derive the formula we start
out with the Golden Rule as can be found e.g. in [6]:

Γi f =
2π

~

δ (Ef −Ei)
∣∣〈 f |UI|i〉

∣∣2 (C.1)

HereΓi f is the transition rate from state|i〉 to | f 〉 per unit time. The inverse time
is the scattering lengthτ.
Our initial state|i〉 consists of two particles with momentum~p1 (fixed) and~p2 and
the final state| f 〉 also consists of two particles but now with momenta~p1

′ and
~p2
′. The matrix element has been calculated in (1.81). Since we are interested

in the total lifetime (e.g. scattering into any possible state) we have to sum up all
probabilities/rates. Using the value forg (1.83) we can now write

1
τ

(~p1) = ∑
i f

Γi f (C.2)

=
2π

~

∫ d3p2

(2π~)3

d3p1′

(2π~)3

d3p2′

(2π~)3 δ (ε1 + ε2− ε1′− ε2′)
∣∣〈~p1′~p2′|UI|~p1~p2〉

∣∣2
n(~p2)

(
1−n(~p1′)

)(
1−n(~p2′)

)
(C.3)

=
2π

~

1
2π~

4π~
2

m
a
∫

d3p2d3p1′d
3p2′ δ (ε1 + ε2− ε1′− ε2′)

δ

(
~p1+~p2− ~p1′− ~p2′

)
n(~p2)

(
1−n(~p1′)

)(
1−n(~p2′)

)
. (C.4)

We do not sum (integrate) over~p1 because it remains fixed.
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