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Chapter 1

General aspects

1.1 Introduction

The physics of ultra cold gases is interesting, because

e interaction is characterized by a small parameter, so that systems may be an-
alytically analyzed. Usually phenomenological data and experimental data
has to be fitted while in this case only the scattering length and themmass
are required as input

e many traps (preparations) and manipulations are possible

The title of this lecture contains two words which have to be defined.

Gasesr being the size of the neutral particle (range of interparticle interaction)
andn the density, the system is called a gas if

Wl

ro << n s, (1.2)
i.e. the range of the interparticle interaction is much smaller than the mean
interparticle distance. This implies that the interaction is characterized by a
small parameter~ ron%).

Ultra cold Classically there is no scale to which ultra cold could be defined.
Quantum mechanically thee BROGLIE wavelength

LI

P p /mks T
offers such scale. We call a system ultra cold if
Ap >N i, (1.3)

At this point quantum degeneracy becomes important.

(1.2)

From now on we will sekg = 1.
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1.2 Single particle

1.2.1 General aspects

The HAMILTONIian is

. 2

h
H=—2-A4U()

whereU (T) is the (Trap)potential. The solutions
Py - H Py = EyQy

are orthogonal and the set of functiopg(T) is complete

[drei)e, () =3,

Z‘Pv(r M f'/ 6(?_?/)-

If the particle is free, i.eU = 0 thenv — p and

ipT p

1.2.2 Traps

General harmonic trap

ur) = coxx +ofy?+oZ)  with solutions
annynz(r) - (pnx( )()Dny (y> (Pnz(z)'

For each space dimension the wave function is of the form

on (%) = ! e_%<‘x—cl>>2Hni (ﬁ) .
2% (n)!/ =l

HereH, are the HERMITE polynomials and,, = /m—z).

(1.4)

(1.5)

(1.6)
(1.7)

(1.8)

(1.9)
(1.10)

(1.11)
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Rotationally invariant harmonic trap

m
=S (pp*+0;7)  p=\ 2+y?

This leads to the solution

U =

Vn,mn, = ¢n, (P A)eim‘l’ ¢n,(2) With

~ P _ B ~
P=" _Ip
mwp
o 1 7H ;
1 np! 2l

1
énymn, = A(0p (20 + M|+ 1) + @o(nz + 5))-

(1.12)

(1.13)
(1.14)

(1.15)

(1.16)

(1.17)

HereH are the HERMITE polynomials and. the LAGUERRE polynomials.

Isotropic harmonic trap

The dimensionless solutions are

I//nlm:(pnl(mYlm(r)) F= . ErlO
mo
1 2n! Al _ﬁ |_|_l A2
=S, | ———aTe 2z 2(f
(Pnl |§ r(n+|+%) n ( )
Eym = ho(2n+1 + é)'

Herel is the EULER gamma (generalized faculty) function.

1.3 Many particles

The HAMILTONIian is

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)
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The simplest case is the free gas, whéyre= 0. If we label possible single particle
states withv and if each state is occupied hy particles than the total number of
particlesN is

Z n, = N. (1.23)

A simple ansatz for the wave function is a product of single particle wave func-
tions:

l'I',I'll,rlz,...(?]_aF,27 s 7?n> = (pil(?l)(piz(ré) T qun(?n) (124)
€ n,,.. = & + Ny + ... (1.25)

This solution satisfies theCHRODINGER equation [1]5) but, in general, it fails

to describe the physics of identical particle§ because the wave function must
change in a specific way under permutatidgh®f any two identical particles.
Since|y|? is an observable which is unaffected by the permutation, this leaves
two possibilities:

Py ==y (1.26)

1. "+": Bosons
The wave function has to be symmetrized over all possible permutations
which exchange particles in different quantum states. This subset of the
permutation group is denoted Ipy.

n!'n!...
W =\ S ) () 2D

2. "—": Fermions
No two single particles may be in the same stat&@ herefore the sum runs
over all possible permutations:

Y= f S (—=)P@y, (T1) -+ v, (Th) (1.28)
Alternatively the wave function can be described by a determinant:
oy, (T) @y, (T5) ... @y (Th)
V’rg?,nz,...:\/% ‘Pvzg(?l) (PVZE(?Z) ‘Pvzi(?n> (1.29)
Pva(F1) Pv(F2) - @y, (Tn)

li.e. no further quantum numbers like color is present
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A general wave function can be written as a linear combination of the above func-
tions

OH ey — (b9 )
yI({r} {%}C{pi}w{pi}({r,}). (1.30)

Only the occupations; of each single particle state are required. With this infor-
mation the wave function can be reconstructed. Therefore, a simplified description
can be expected if the change freprepresentation to, representation is made.

1.4 Basics of second guantization

We have states,, v,, ... with nj, n,, ... particles. Each state is described by
Iny,N,,...) with the special state vacuul@® 0, ... ) = |0). The following operators
are relevant to these states:

e a, is the annihilation operaton, — n, — 1
(Note thata, |0) = O for anyv)

e al is the creation operaton, — n, + 1

Note that these operators annihilate or create partiol@sgiven quantum state
unlike the operators in first quantization which change the quantum number of
one quantum state.

As was already mentioned above, there are two types of particles.

1.4.1 Bosons

In this case we have the following commutation relations:
[av,aH =0, (2.312)
lay,a,] = [ai,az,] =0 (1.32)

Because states with differemtare independent, we consider only one state to
understand the consequences of the above generator algebras.
The actions of the operators on the states are as follows:

al0) = O (aT)” 10) = am|n) (1.33)

(0]a" = (n|an (aT ) "oy = e n—1) (1.34)
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All states are orthonormal, i.énjm) = d,m. Theay can be chosen real, as a phase
can be absorbed into the definition of the states. It follows

?=1 and (1.35)
o2 = (0]a" (aT)" 10) = (0]a™2 <1+ aTa) (aT> o) (1.36)
= o2 1+ (0ja" tata (aT)nl 0) (1.37)
— o2 1+ (0" " (11a%) (a)" o) (1.38)
= 202 |+ (0a"2 (aT)Za (aT) "0 (1.39)
=naZ 1+ (0fa"™ (o)’ ao) (1.40)
=nl. - (1.41)

Therefore each state can be written as
) = 7% (J)” 0)  and (1.42)
o'ln) = —=a(a")10) = ——/(n+ Dljn+1 (1.43)
=vn+1in+1). (1.44)

Analogously we calculate

aln) = %a(cﬁ )"I0) = \/—1n_!(1+ a'a) ()"0 (1.45)
:%{ n—1)!n—1) +a'a (aT)n_lyo>} (1.46)

- \/—1n_| {\/myn_ 1)+al(1+a'a) (a) i 10)} (1.47)

- v+ (o) o (o) 10} (149

:%nmyn_1>:ﬁ\n_1>. (1.49)
Defining the particle number operator="a"a we get

i) = a'aln) = a'y/Aln—1) = VAyAIn) = nin), (1.50)

and the energy operator is therefare= ea'a.
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1.4.2 Fermions

The operators,, andaT obey anticommutation relations
{aV7avl VV/ (151)
{ay,a,} = {av,a +=0 PauLIl Principle (1.52)

Again, considering for simplicity the one state problem, it is easy to see that the
occupation numbex can only be 0 (the vacuum state) or Ja(R1 principle):

a0)=0 ay)=0) af|0)=|1)  with (1.53)
H=ea'a A=daa (1.54)

1.4.3 Single particle operator

We can now define the field operators as
r) = Z ay @y (T) (1.55)
\%
¥im) = alos®. (1.56)

Herev runs over all states and thg, (') are the amplitudes (probabilities) &t
for a particle to be in the state. They have the following (anti-)commutation
relations:

O] =5 ol %/[%JL (157)
= Z oy (F —8(F—7') (1.58)
(), 9], = [ﬁﬁm, Tl >} =0 (1.59)

By using the field operator§ () and §'(F) various quantum mechanical oper-
ators can easily be transformed from the space representgtieprésentation)
into the occupation number representatiomgpresentation).

For aSingle particle operator

Fo=S () (1.60)

(Examples:
=5 8(r—1)  density (1.61)
|
h2

I—A|1 = z {—Z—A +U(F’)} Single particle FAMILTON ian) (1.62)
|
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we have
F = /dsr P OIOEE =S (VIf[v)ala, (1.63)

VITIV) = [ & L) HD@ (). (164

Each termin the sum on the r.h.s. of 0. (IL.63) describes the transition of a particle
from a statev to a statev’ with amplitude(v’| f|v).

Examples:
A(F) = § () r(F) (1.65)
N=Sala (1.66)
Z vy

H, = [ d° <za1,<p3,(r)> {—g—;awm} (zav%(r)) (1.67)

/
/ <zaw‘Pv' )> <Zav€v‘Pv(r>) (1.68)
2.5

e,ata,  with / o 3, (F) gy (F) = 6, (1.69)

1.4.4 Two particle operator

F= ;f(?j,?k) (1.70)
j
Example:
n 1
Hint = é; U, (F—77) (1.71)
|
Now we have
o= [ & T d ) FE )i (172
and the the interaction part of theaMILTON ian as example:
- 1 .
H.. = > Z (viva|U, |v1v2)a1, ‘11;/ ay,ay, with  (1.73)
!yl 1 "2
V1:V2: V1V

VAU vo) = [ rd gy (F)gy, (FIU(F=T)9u, Py, (1) (1.74)
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Figure 1.1: Interchange of quantum state

This term describes the scattering of two particles in initial stajeend v, into
final statesy; andv; with an amplitude/v; v4|U, |v,v,).
We can now write down the completeaidiLTON operator in the form:

A 1
_ t I\ Tt i
H= stavaﬁév vzv/ v,(v1v2|U|\v2v1>av1avéav2avlWlth (1.75)
1°v2» 1272

N=Yala (1.76)
Z vvv
The constraint of fixedN introduces technical difficulties. To avoid them, we
introduce the chemical potential
H—H-uN (1.77)

and keep a fixed. The system can be thought as connected with a reservoir and
the chemical potential governs the exchange process. In our calculations we have
to replace

& — & —U (1.78)

to take this extra term into account.
If we consider the homogeneous case thdecomeg and

BT d3p

oy =¢€r z — %/—(zmﬁ (1.79)
2

e =2 (o/lo,) — @eh)s(p-P). (1.80)

For the time being we set the volurfé= 1. Since we consider the homogeneous
casep is conserved therefore

<ﬁ1/ﬁ2/|u| | ﬁ1ﬁ2> = (271:71)33([_)'14- B, — ﬁll - ﬁz/)g- (1.81)
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To calculateg we have to switch carefully to the center of mass reference system
and use relative coordinates. Thegrurns out to be the ®URIER transform of
U, (7):

g:/dsrul(r»)éml—rsz)%, (1.82)

But quantum degenerate cold gases, egnl (L.T)-(1.3), imply collisions of particles
with low momenta (i.e. slow particles,p < 7). From scattering theory we
know that in this regime collisions are characterized by only one parameter, the
scattering lengtla. Therefore, in the BRN approximation,

2
g= %a. (1.83)

As a result, the AMILTON ian takes the form

A 1
— T T .t
H= Z (%—u) aptp+ 59 Z 0 Oy O, ip, (1.84)
ﬁ p17p27p/17p/2
L) g
Vo —__,\\
\
'-.
5
Y
i,

Figure 1.2: Plot of inter atomic potential
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Bosons

2.1 Free Bose gas

2.1.1 General properties

For a free B>SEgas the FAMILTON ian is

H= (g;—m)ajap. (2.1)

At high temperature we have classical behavior; we consider only ultra cold gases
for which

~NTE e Ty~ 3 (2.2)

whereTQ is the quantum degeneracy temperature. With thasaHTONIan at
T . 0 the ground state is identical to the product of the single particle ground
states and the fixed average derfsisygiven by

_ 1
— <za{)ap> = <Z Np) = %m (2.3)

/Znh ot u) . (2.4)

This equation defineg; two properties can be derived from it:

1. u < gy =0 because must be positive

Note that we take the quantum mechanical as well as the statistical average

17
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2. The density of states at energys

B B d3p ﬁZ
— %S(g—gp) = /WS (8 Zm) (2.5)
1 o p?
_ 4”7(27#1)3/0 dp s (e - %> (2.6)
vam\’

= <%) 4717/000dx\/)_(5(8 ) ~ve—%0  @7)

Obviously the ground state is not counted properly.
Analyzing the occupation of each state
1

Np= exp(%) _1 (2.8)
we can distinguish two cases:
1. Atagivenpandu
Tlinpl (2.9)
2. AtagivenpandT
il Linp1 (2.10)

Therefore, to keep the average density fixed, we have to decrease the modulus of
the chemical potential with decreasing temperature:

Tl=|ull (2.11)

But u > 0 hence we can defin‘% to be the temperature whene= 0:

p
A / N (2.12)
Zﬂh exp ZnPﬁl'C> -1 2mTC
3 4rm © X2

2mT.)2 d 2.13
( m ) (27Th)3 0 XeX2 . 1 ( )

3 _ 1
= (M)l [dote ™ ——; (2.14)

izl (D) (E9)4) s
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Here we have used

[oe]

md e ¥ S e [dxR S e (2.16)
O/X e nZOe /x Ze

Sl P

IIM8

/m dyye =& (g) WVE e
0

(2.18)

N |
©3m :

/ dye @ =
—ay? 9 [T oy
/Odyyze aa/o dye @, (2.19)

Therefore the critical temperature is

3
3\] 2K > h2 2
= — —n3 =3.31—ns. 2.2
Te = (27) [5 (2)} mn3 3.3 mn3 (2.20)
ForT < TC we can now rewrite
e +/ (2.21)
27”1 exp Tp) -1
—ny(T +/ ) h ZlT (2.22)
d exp ST TC> -1
T\? [ d®p 1
—ny(T)+ (—) / (2.23)
0 TC (Zﬂh>3 exp<%) -1
h b3
T}
Ny(T)=n [1— (—) (2.24)
Te
1
(27h)35(p) = (2.25)
eXp(ZmTC> -1
~5<8(p)

This means, we have a macroscopic occupation of the ground state,ds= B
EINSTEIN condensation (BEC).
Further properties:

E=Y , np~T3 (2.26)
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ForT = 0 all particles are in the ground state wit= 0. Butu = 0 also therefore
the energyE, of the system is independent of the number of particle and hence
unphysical particle number fluctuations are expected. Further

~ T<Te
H="Y (ep—u) pa o 22 a ap (2.27)

p
Py Baba, (2.28)

This means that the excitations are identified with particles.

2.1.2 Superfluidity in Free Bose Gas condensate

Dissipation means creations of excitations with momenfuopposite to the gas
velocity due to the interaction of the gas with wall. These excitations decrease
the momentum of the gas and and stops it after some time. If the medium is
superfluid, no such excitations occur. Atz 0 no thermal excitations are present,
only interactions with the walls are relevant. To find out if those excitations occur,
we have check, wheth& > E,qe TO describe the situation we have to look

at two different frames of reference:

V111090010

&

Wiz

Figure 2.1: Frames of reference

Before K': E' = E, P’ = 0 (no excitations, all particles in ground state with: 0)
k: E=Ey+3MV?

After E' =E,+¢p, P' = p, (small)
E=Ey+3MV2+gp+p-V
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Obviously the total energy decreases (dissipation occufs) ffV, i.e.

—pV<0 & g <pV. (2.29)

This is possible foV <V with

®_minP_o (2.30)

For the free B SE gas dissipation of a flow at = 0 occurs for arbitrary small
velocities.

2.1.3 BEC in lower dimensions

In2D

d3p d?p
2rh)3 (27rh) (2.31)
- . 2.32
n= / 27'57’1 exp Tp) -1 ( )

This expression diverges pt\, 0 as% thereforeu # 0 always. BEC occurs only
atT = 0, when all particles are in the ground state, Tge= 0.

In 1D no BEC occurs (even dt = 0).

However superfluidity in 2D is possible (if we switch on interaction, see below).
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2.2 Trapped Bose gas

2.2.1 Box

In a box with? = L3, N particles and infinite potential at the walls the wave
function of one patrticle is of the form

2
y(r) = (%) sin(%nxx)sin(%nyy)sin(gnzz) (2.33)
B2 72 n
&= o <E> (NG+n+ns)  p= o (2.34)
3 h?x? 6 h?m? 2
_° — " TN 3 2.
0T2mez AT 2mz T c (2.35)
H2 (N3 12N3 P
Te=331 (3] =331 5 ~ g~TN >0 (2.36)

1

N = ; eXp(ﬁ) — (2.37)

SinceN has to remain finite even far — 0, &, — u ~ T has to hold (at least for
low T). To look at this we assume that

& — UK E —§& (2.38)
En— U = &n—Ey+ & — U X &y — & (2.39)
——

~0

Using this assumption we get

1 1
N ~ exp<8°{“> ] + Zlexp<8n-|'£o> 1 (2.40)
_ ! +/d3n ! (2.41)
exp( o-t) —1 exp( ) 1
~ <1> 7 /CESp | (2.42)
exp(go{“> —1 (2nh)? exp(%) -1 .
1 T\?
= exp<£0T_“> ] +7n (T_c) N="7%n. (2.43)
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In (2.41) we substituted\n, = 1 = Apy, = 4% with

L) 3 v 3
/dnxdnydnz_ <E) /p>0d p= (27:71)3/pd p. (2.44)
In (2.42) we note, that only terms wih>> g, are important. FronT(Z#3) we get
1 T2
— =N|1- <—) =N, (2.45)
exp(#) -1 Tc
1
& &—u=Tin| 1+ 3 (2.46)
_(I)?
v (5)]
T 1
=NT & (2.47)

which is macroscopically small ff < T. This justifies our assumption ab@\/e
For the number of particles in the first excited state we gef ate, < T < T

1 1 T

N, = — ~ p— ~ (2.48)
exp( 242 ) -1 exp(%) -1 &%
T
~—Nis>1 but (2.49)
Tc
N; 1T
— ~ N7 3— N N,. 2.50

Therefore the occupation of the ground state is macroscopically larger than that
of any other state.

2.2.2 Parabolic trap

In an isotropic parabolic trap witN particles and oscillator frequenay the en-

ergy is

3 3
gﬁ — hw <nx+ ny+ nz+ é) 80 — Ehw (251)

2actually it only shows that our assumption is self consistent
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The same arguments as/in Z}2.1 hold true that &, for T\, 0. Redefining

h=u— ,u—ghw A\, 0forT\, 0 (2.52)
T
Ny = h—cn (2.53)
we get
1
N = 2.54
2 exp(ey— 1) 1 (54
z/dnxdn),dnz ) ! for T\, 0 (2.55)
exp( (nx+ny+nz)) 1
_ TC 3 3./ 1
- (%) /d n exp(n -+, +ny) — 1 (2.56)
T 3 »
- (i) nzl/ d e (2.57)
_C nrj, nr(,/ nry
(hw> /dr((e /dr(,e dn,e” (2.58)
T.\*2 1 T\
~(6) 27 (a) s (259

Solving this for the critical temperature we get

=

T. = hoN3¢& (3)3 = 0.94N3ho > ho. (2.60)

Quantitatively the critical temperature for a trapped gas can be obtained from the
same type of arguments as in the homogeneous case:

Ap N_Nﬁ% (2.61)

Since for a classical oscillator potential and kinetic energy have the same magni-
tude and the latter is related vig{1.2) to temperature we can estimate the size of

the cloud as
mo?R2 T 1 /T
— R~ —4/— 2.62
2 "2 TRYoVm (2.62)
_ N 1
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2.3 Weakly interacting Bose gas
If we consider a unit volume & = 0 the HaMILTON ian reads

N 1

_ T Tt

H= Z Epapa, + 59 z ap,Op,0p,Gp, - (2.64)
p B +P=P3+0,

Sincegp — g, ~ 0 we cannot apply perturbation theory because we cannot guaran-

teeg < gp — &,. Explicit calculation show divergent terms already in second order.

Our solution will also show the invalidity of perturbation theory (¢f. (2]111)).
We note that almost all particles are in the ground state, i.e.

aha, <ng  Vp#0 (2.65)
aba,=ny>>1 (2.66)
a,ah =1+n,> 1. (2.67)
N——
~Ng

This leads to the simplification,, ag ~ /My > 1. Taking leading terms in,, we
can write [Z:6/4) in the form

- 1 1
H= % epagap + égﬁ% + 59”0 r;o {apa,p + aipag + 4agap} . (2.68)
The remaining momenta have to be equal in the last sum because of conservation

of total momentum.
Remembering that

Np=n-— znp (2.69)
p
we can rewrite[(2.68) with the considered accuracy as

~ 1 1

H= Egn2+ ; spagupnt égn z {Za};ap + aipaz,nt apafp} (2.70)
p#0 p#0
= Eg+ ; wpfihd, (2.71)
p#0

which is a HAMILTON operator for quasi particles in a harmonic potential. To find
the relation between these quasi-particles and our original (or base) operators we
assume according toddsoLYUBOV

- t — —
ap = Upap+Vpa_, U = Up Up=U_p (2.72)

a‘;, = upa}; +Vpa_ Vo=Vp  Vp=V (2.73)

p
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and require them to obey theoBEcommutators:

[ap,ap} H,, U} ~0 [ap,a;] =5,y (2.74)

Using this we get

[ﬁp,&g] = UpUy [ap,a:},] +UpVy [ap,afp,}
~—— ———

8 0
+VpV [aT aT}quv [aT a } (2.75)
PP o 7| TP [T T p
—— ——
0 ~Opy
=8, (WB—V3) = B —Vvi=1 (2.76)

This equation is solved if we set

Up = cosH{¢p) Vp = sinh(¢@p). (2.77)
The inverse relations are then given by

Clp = Upap — Vpaip (278)
al = upil,—vpi_,. (2.79)

If we now defineg, = €5+ gnand insert[(2.78) and (Z]79) into theAMILTON ian
(2.70) we get

71 s o Lot
H= §9n2+ p;O {Epapﬂp + 59N (apa7p+ a_pap> } (2.80)

1 ~ [ 2~ts ot
= an2+ ; {ep [upapapjtv%afpa — UpVp (apa +a_ pap>]
p#0
1 . ate o~
+ Egn[ %aEaT —|—vf,a_pap—vpup (agap—%afpaip)
+ updi_ i+ VBREET |, — upvp (853, +d_paT ) | } (2.81)

1 -
— égn2+ ;O{epv% — gNvpUp }
p

EO
+; pa [€p (U5 +V5) — 2gnupvy)]

. ~ 1
+ ; p+a,pap> [ —&pupvp+ Egn(u%+v%)]. (2.82)

=0
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Thus¢p has to be chosen such that

gn(u’ -+ v3) — 28pUpvp = 0.

27

(2.83)

The simples way to find the angdefrom this equation is to use the relation

W= (B R (B
=1

We get as the result

P 2| wp P 2| wp
w5 =8 —(gn?®  Ep=¢p+gn
with the HAMILTON ian
~ 1 1 ~ ot :
H= égn2+é (wp—E&p) + ; a)pa;{,ap with
p#£0 p#£0
w5 = &5 — (gn)® = (8p— gn) (o +gn) = ep(ep+201)
2 /02
_F (P
= 5m (2m+29n) .
For p — 0 we havew ~ p.
A
@, |
I

Figure 2.2:wp as function ofp

More precisely, if we defirfe

gn
p2 =mgn \?:ﬁ

3In this context we assunte~ n,

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)
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we get

D A o P< Pe (2.91)
P X4agn p> pe.

Reconsidering the requirement for superfluidjity (2.30) we get

[y
= — ) = 0. 2.92
Ve mpln( p) V£ ( )
If p< pci.e.
Wp = %p for p< pc (2.93)
we get
w2 §2 2 (gny)? _ <
Wp—Ep= P = (ary) QT o' P=Pe (2.94)
OptE  optE | G (gn)2n p>p
1 1, ,em 1 (gny)? 2m
By =596 5(9ry) %pz 22 {wp+§p (9%)" 2 (2.95)
_1o) oM _(gn0)2 1 m
- 2no{g g %pZ} > %{wp+§p 7 (2.96)
indepe?wrdentom
1, (gny)? { 1 m}
=—_ngl — ——— . 2.97
29 2 & laopté r? (2.97)

Herel is the quantum mechanical scattering amplitude defined by

r:g—gzgr and (2.98)
p

4 2
ro 4, (2.99)
m

The solution is solved iteratively:

m
7t (2.100)



2.3. WEAKLY INTERACTING BOSE GAS 29

The sum[(2.97) is convergent with the dominant contribution coming fsefm..
Looking at each term dE, we get

3
1~z/<dp3 1 %h—lg/dgpirv& (2.101)
p

p<h. Pp +€p 2mh)3 wp+ €p ! g, gnyh®
m
_ h_g'f" (2.102)
3
m [ dp MR (2.103)

2 73 2 3
207w ) #
ppr pépc

Using this the second term ¢7(2}97) fg4 can be estimated (up to some numerical
constanC resp.C, c.f. (2.106)) as

2
EON@ arg—C3 gno)zmp: (2.104)
B 2nh2ar§

= (1—6 a3n0) . (2.105)

Here, /a3n, is our old small parameter (c.l) withr r).
The exact calculation leads to

21h? 128 /a®n
Ey=——ar |1+ 514/ —]. 2.106
0 m [ + 15 n] ( )

Note, that the equation containsnotn,,.
Lastly the number of particles outside the condensate fi£.0) in the ground
state consideringp|0) =0 is

=2 2

of a’p _ 1 &~ %%
<p;0 pip) = ; b= > ; 5 ; oo(Eot ) (2.107)
_ (gn)? _ (gn)? 1
= 2.108
2 wp(ep twp) 2 pgpc vpgn ( )
gt P L IR i
~ gn- v 2xh) e ~gn- g~ N na®  with (2.109)
2
_ dzhva (2.110)
m

This result ¢ a3 is not possible by perturbation because in perturbation only
integer powers of the interaction constant are possible).
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By exact calculations we get

8 a3 .
(Z af,ap> =3n n? =n<n with (2.111)

Wik

a~ryg<<ns. (2.112)

Using the definition ofg (I.83) we calculate the chemical potential in leading

order using[(Z.105) of (Z.106)

JE, 9IE,

‘uzﬁ,\,g—no:gnozng>0 (2.113)
because (cf.[{Z.69))
nozn(l—g g) ~N. (2.114)

This is valid for the ground state @&t—= 0 and no excitations present.

EP—JJ i EP—JJ
-

a |

Reservoir Mg

Figure 2.3: Energy spectra indBE condensates. If in the free case u would
become zera (Z.4) cannot be fixed. If a repulsive interaction is present, the
average number of particles can be fixed bec&ijse- an?

2.4 Mean field approximation
Again we note, that

apah —np+1>1  and (2.115)
aba, — np> 1. (2.116)



2.4. MEAN FIELD APPROXIMATION 31

If we are interested only in quantities proportionahtave can negleciin,,, a}f,] =
1. Our theory then becomes a classical field description:

W(F) — w(r)=/nr)e®  with (2.117)
vy =n(r). (2.118)

This works only if the classical field is slowly varying or by using@RIERtrans-
formation the momenta are small (slow motion). The reason behind this i that
and® behave similar tg andx in ordinary space. The wave function can always
be multiplied with a phase without changing the physics:

v, (F) — €%y, (F)  single particle (2.119)
W(Fy,...,Fy) — eNOW(F, ... Ty (2.120)
This implies the operatofd = —i% and¢ = ¢ which leads to
[¢,N] =i = ANA¢ > 1. (2.121)

But in a sufficiently large volumAV one may havéN > 1 (but still QNN < 1).
Therefor, it follows from [Z.T21), that in this cas® < 1. As a result, for such a
volumeN and¢ are well defined quantities. By dividing our system into blocks
with volumeA?”’, we can defind\ and¢ for each block and these quantities vary
slowly from block to block.

If we consider the thermodynamic limit, i.BL — oo while % remains fixed we get

(N-LJON) = y() and—in2 i =[H, 9] (2.122)
= —ih%w:nmm—lmq‘/— jH)|N) (2.123)
— lim(N — 1/(E(N — 1)§ — YE(N))|N) (2.124)
= lim (E(N — 1) — E(N))(N — 1[#[N) (2.125)
:?:IJ
S (2.126)

This differential equation can be solved by
w(F,t) =e 5 y(P). (2.127)

If we replaced by H' = H — i we absorb this trivial phase in ouraMiLTON ian.
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This leads tfl the GROSSPITAJEWSKI equation (GP):

0 h? 5
ihory=—o Ay +(Qly]"—n)y (2.128)

Here|y|? = n~ n,. Therefore we will not distinguish betweerandn,.
If we are looking for a stationary, homogeneous solution, then all derivatives (in
GP) become zero and yf # 0 we find

W =gn. (2.129)

Setting the possible phase to 0, we can describe small fluctuations around the
ground state by a wave function

¥ =/My+oy(rt). (2.130)

Substituting this wave function into the GP (2.]128), taking only terms up to linear
order indy and using[(2.129) we get

0 h2 §
|h56w_—inﬁ5w+gno(5w+8y/ ). (2.131)
To solve this, we make the ansatz
oy(r,t) :Aexp(i(g—wt))+B*exp(—i(¥—wt)) (2.132)
and insert it into[(Z.131):
hwA = (gp+gny)A+agn,B (2.133)
—hwB* = (gp+gny)B* + gn,A* (2.134)

Solving this form we getwp = /€3 — (gny)? andgp = &, +gn, again.
Calculating the expectation value and remembering (2.129) we get a functional
for y:

h? 1
Ev) = [d <§n|Dw!2+ Eglw!“—uWIZ) (2.135)

h? 1 2 1
=/d3r <%|Dw!2+§9(|wlz—no) —égr%) (2.136)

Since the functional does not depend ospace independer, i.e. E{y} =
E{€®y} we can choose a phase. For the previous calculatioas). Once the
phase is chosen, the symmetry is broken, because

v, # €%y, (2.137)
If ®is a slowly varying function, then the functional will not change much.

4not shown here
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Theorem 1 (Goldstone)If a global continuous symmetry is spontaneously bro-
ken (the ground state is not invariant under symmetry operations) then there exists

. . 0
a soft mode, i.e. &, with @p 2 0.

We have such a situation. pf— 0 thenep, — 0 and thereforeo, — 0. This leads
(2.131) toB = —A and a purely imaginary change in the phase:

Sy =Ad0 — A0 (2.138)
=ie,/Myd(T,t) and (Z.130) becomes (2.139)
y(Tt) = /My +ie /Md(T,t) = /Me® (2.140)

If we substitute this solution into the definition of the probability flow (=superfluid
flow) we get

. in )
F=nWs=— 2L (v (Oy) - (Oy")y) (2.141)
= n%DCD with w(F,t) = 1/n(F,t) e®, (2.142)

Herevs is the velocity of the superfluid flow. It is a potential flow:

h -
V= 00 (2.143)

therefore the rotatiofl x Vs = 0. If we compare this to solid body rotation with
Veg=QxF  we get (2.144)
0 x Vgg = 2Q #0. (2.145)

Therefore the fluid must stay at rest even if the vessel is rotated.
On the other hand

Eo=E— (M fz) (2.146)

and thus rotation must occuvi(becomes nonzero) € is large enough.
To solve this we keefl x Vs = 0 everywhere except for a line where

l1’/|Iine =0. (2.147)

Calculating

fvs-oﬂ — const= 27T = ﬁfmcbdrz LY PP (2.148)
m m m
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j &
k]
™,

"‘\.

-\. ——

-
A3
Figure 2.4: Top view on rotating superfluid liquid

Hererl is the vorticity or circulation an# € Z the circulation quantum number.
With Vg ~ é¢ anddl = é¢rd¢ we get for the critical velocity

h k
=—-. 2.149
Vs mr ( )
This expression becomes infinite for~ 0 (while being nice for — ) therefore

superfluidity has to break down at some distanee& with

Pt _ /9%
Vs = Ve = o= m\/m_ et (2.150)
Fork =1 we get
éwizﬁz h . (2.151)
me P /Mgny

By using ),[(1.83) andl (1.1) we get for a number of particles in a vofine

the macroscopic value
1 1
T 12
Vans

and therefore, the lengthis much larger than the average interparticle distance.
If L is the length of one vortex, we now get for the energy of the vortex

né3 > 1. (2.152)

EK) 1/, o, 1 (hk\* d?
— = E/d rpvé = énm(ﬁ) = (2.153)
2 .R 2
_ ﬂnm(ﬂ() ar o ein (B) (2.154)
m er m 3

and for the angular momentum

R
@ = /ervar = mn%an/ai drr ~ TnhkRe. (2.155)
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rer

Figure 2.5: Radial part(r) of the wave function in superfluid sEgas

Conclusions:

If M is fixed then we either haverepeated vortices or one vortex with circulation
k. SincekE(1) < E(K) it is energetically favorable to have vortices wikh= 1
only.

The critical velocity, when at least one vortex exists, is with

Eqt=E—(M-Q) =0 (2.156)
_EYH _ n (R
QC_M—:L)_mRz'”(g)' (2.157)

Q. is very small, usuallf2 >> Q- and many vortices exist. They repel each other
and a lattice is created where phonons can be observed.

Figure 2.6: Many vortices in superfluiddsEgas

Sor a proper combination of both
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If we compare our superfluid rotation with solid body rotation we get With1
- h - 2nh 2nh
fvsdl - mfmqaou =N =Tng (2.158)
?f v, dl = / 250 x V, |, = 205.. (2.159)

HereN, andn, are the number and density of vortices respectively&rite area
enclosed in the calculation. Substituting both equation we get

mQ
=—. 2.160
Ny i ( )
The velocity around one vortex is
hé xT
Vs = 2 (2.161)
and the total velocity is the superposition of each velocity
h&x (F—T)

2.5 BEC in anisotr. harmonic trap at T=0

2.5.1 Comparison of terms in GP

. . h? L1 At ot
H= /d3r o' {—%D%um} W+ Eg/dsr ARARAYS (2.163)
2 2
mw 4rh
U (F) = 2 - 2.164
m="5r" g¢=-_"a (2.164)
A macroscopic number of particles is in the ground state of the trap and the con-
densate wave function can be written as

D(F 1) = <’\IliLnoo) (N—1|y|N) = o(F,t)e % (2.165)

Here the braces around the limit denote that we always take the leading terms in
N only. The exponential wave function carries only the trivial time dependences
which arises from the different number of particles. We now get the time depen-
dent GP (cf. [[Z:128)) with potential.

9 G
N {‘anZ—HU(r)}wglm% (2.166)
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The ground state must be a stationary state. We can chposal because i
contained a non trivial space dependent ph@se this would cause a gas flow

and therefore an increase of energy (Ef. (2.142)) Thus, the equation of the ground
state wave functiokp(T) reads

2
—TnD2<p+U(F’)<p+g(p3:uqo (2.167)

n(r) = o2 / &3 2(F) =N (2.168)

Solving this equation we get.
The simplest case is the non-interacting gasg-e.0:

U=¢g= ghw (2.169)

1 -5 ['h
@ = VNgy(F) = VN e % ly=y/— (2.170)
V1373 mao
0

If we are looking at weak interaction, we can assume the wave function to still
have a similar form. Before proceeding, we have to define the term "weak". For
this purpose the ratio between kinetic and potential to interaction energy has to be
considered. More precisely

(=]

Egin ~ Epot~ N (2.171)
/d3r(p = /d3rn ~ gnN = g|3 (2.172)
2 N2
_ 47rh 2~ hoN (N a) thus (2.173)
mly, o - lo
Bine 2 (2.174)
Ekln IO .

This ratio describes how important interaction is for the ground state wave func-
tion.
In the experiment we havg ~ 1um and

2Na:a=2.75nm  ®Rb:a=5.77nm  SLi: a=-1.45 nm (2.175)

This ylelds— ~ 1073, Therefore we can consider the interaction to be small if

N < 1000 otherW|se we have to consider the interaction right from the beginning.
On the other hand we still have a gas as our criteria shows:

_ N 2
<l = —~a=(N2)(2) «1 (2.176)
13 lo/ \o
Our system is gaseous while< 1006 = 10°.
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2.5.2 Thomas-Fermi-Regime
Repulsive Interaction

This regime is specified by
Nlﬂ =1 (2.177)
0
Since we are dealing with a trapped gaseous system we assume the system to
occupy a volumdr® with

R> I, (2.178)
As described in[(Z.1T74) we have
_ N N2
Evin < Ejpt ~ 9NN = gﬁN = g@ (2.179)
JE _JEy N

Because oE ~ E, (definition of THOMAS-FERMI regime) andu = g—ﬁ we get

2
mw?R2 N
~U=0— 2.181
N n%a N ho\2 4
—18 (N9> (2.183)
lo
a\b
:>R~I0<NE) > 1, (2.184)
Therefore we justify[(2.17§)
N r%aN/ a\ s a/ a\ 3
— g ~ L2 (NS NE(NE 2.1
"R mlg( 'o) " 'o( 'o) (2.185)
a\ ¢
:hw(Nl—) > ho (2.186)
0
2 2 a\ 8 a\
E. ~ N = N N— =hoN [ N— 2.187
kin ™ ZmRe"  2mp (IO) @ < |0) (2.187)

1
5Note however, that £ (N%) ° < 3in real experiments.
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Comparing this td; . = uN we get

int —

Wi

E,. -
Eiin (N3> <1 (2.188)
uN Iy

which is consistent with[{Z.1F9). This means the kinetic energy per particle is
< ho.

For numerical calculations it is convenient to use the dimensionless GP. To achieve
this we set

. N .
r=Iyf U =hou ¢=1/13® (2.189)
0
If we insert this into the GH{Z.1p7) we get
21 _, mw?,., 4rh?aN .q -~
{_fnl_zmr > ——Igf }¢+T|—3<p =houe (2.190)
h h .~
"0 1902 6 L arho 260 = hofi (2.191)
2 2 lg
1 1,) -~ Na.; ..
{—§D§+§F2}(p+47rl—a<p3=u(p (2.192)
0

If we are looking for the stationary ground state solution we can neglect all deriva-
tives in (Z.I6]7) because the ground state is time independent and the kinetic terms
are negligible and get

w2r2
¢+9¢°= e (2.193)
1 mw?r? 1 /2u
2
= — — < = — e .
@=(r) g(u > )@r_R 0 (2.194)

and 0 otherwise.

Only at R numerical calculations show slight difference to our approximation.
Using this, we get

1 (R maw?2r?
N:/d3r 2(r :—/ d3r( - ) 2.195
o=(r) 3o u 5 ( )
_H R 3 _ﬁ
£ dr<1 RZ) (2.196)

‘uR347r/ dx0l(1—x2) — 4n“R3(§—§> (2.197)
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Figure 2.7: > = n in THOMAS-FERMI regime. The dashed line indicates the
numerical solution for the radial wave function.

3
2
_ gy MM l(2u> 2

- = () = 2198
Tani?amd \m ) 15 (2.198)
5 1
TN 2.199
(1) e ae2is (2.199)
5 5
1 /2u\3 1 /2u\ 3|
_ 1 f2uN: Vho 1 (20l (2.200)
15\ A0/ aymo 15\ how a
1 5
1= >ho |15N2 (2.201)
2 I

Attractive Interaction

If we now consider the regima < 0 we expect a collapse of the free system. If
the system is in a trap, the energy levels are discrete and an equilibrium (more
precisely, a long living metastable state) is possible. More quantitdfive [2.171)
and (Z.17B)

Eyi, = hoN (2.202)

lal

E. ~ 9NN = —ioN? | (2.203)

0
IF N is small the kinetic term can still be dominant thus preventing the collapse,
i.e.
a
NI_ <1 (2.204)
0

IS necessary.
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To get a more quantitative picture we introduce a paranmeterdescribe possi-
ble solutions and start out with the ground state wave function of the harmonic
oscillator

o(r)=vN 3e*2'57 (2.205)
1383/m
The energy is now a function af
E(z) = Ey(2) +E«(2) (2.206)
2 2.2
::/d%¢{—ﬁéml+mgr }¢ (2.207)
(2 (12
éf NL/dSHe T {—ZQEﬁ—kfﬂz}e_T' (2.208)
T2
_hoN /d3r e 7{2‘2 (—Drz,—r’2>
2 752 ——
—0
2\ .12
+(Z+zYrle T (2.209)
"ONZ 122 L /d3 e (2.210)
hm / dr're "’ (2.211)
7L'2
= hoN= (22+z ) (2.212)
Analogously we calculate
1
Therefore,
3 1 a) 1l
Ez::th-—£+14-————(N—)—- 2.214
@ =noN{Z3@+2 %~ (N ) 5 (2.214)
¢
Minima of this function can be obtained from this equations
E'(z 3 _ 1
ha()l\)l :E(z—z 3)+3§? oA {25 z+2§} (2.215)

0=z —1)+2¢ (2.216)
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42
In the limit § < 1 we get
z, ~ 28 +0(2) (2.217)
1
z,=1- 5 (2.218)
The minimum value, of the expression(Z* — 1) obeys the equation
(-2 =57—-1 (2.219)
Thus the minimum occurs at
1
z.=— (2.220)
53
and equals
4
m=z(Z-1)=-— (2.221)
52
" - ziz
Eizi / ! L

_ a’ |

/N S |

! |

l,"' \U/" |I

! i |

/ - |

! II

,l'll . Zy I|
II ; : 1I"'. "II ;-

s, \ f(l'l

— g
m —

Figure 2.8:E(2) for different values of; "--" 2& <mand "-" 2 >m

Therefore a solutions of (Z.215) dr (Z2.216) exists only if
4
25 >m=— (2.222)
52
As a result the critical value d{ is:
2 . . .
NC@ =V2r— =0.671 in approximation (2.223)
(2.224)

Io 5z
=0.575 numerically in GP
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Hydrodynamic approach

From superfluidHe we expect that hydrodynamics may be applicable for our sys-
tem as well. The important variables in hydrodynamics are density and velocity
(which is Z0® in our case cf. [(2.143)). We are still considering theoMAs-
FERMI-Regime [Z2.177). Starting out with the ansatz

— /n(F, 1)y VS:%DGJ (2.225)
we evaluate the the various derivatives:
ih%w:ihéq’{%ﬁﬂ\/ﬁ%q)} (2.226)
:iheiq’{\/_zl 5tn+'\/—at¢} (2.227)
=vyih <2_1n% +i%—?) and (2.228)
ﬁz 12 2 D i
—o= 0Py = —{ (PVR)E® + 20V (0e°)
+ ﬁ(mzei“’)} (2.229)
:_—{ (0%y/n)e® + \/_(Dn) (Od)e®
+f( ((D¢)e'q’)} (2.230)
=——f ‘D{\f (O0?v/n) + ( n)(U®)
—HDZCD—(DCD)Z} (2.231)

to stitch the GP[{Z.166) together:

(1 an 0P h? 2 .
|h<% 3 Ty ) = Zm{\f(D VN) — (OP)2+ (Dn)(D¢)+|D d)}
—u+U(r)4gn (2.232)
For the imaginary part we get
1 9n h? i 2 . h?
It —%—(DnDCDnLnD P) = —|mD(nDCD). (2.233)
This is the continuity equation:
an

5 0% =0 (2.234)
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Evaluating the real part we get

Id 21, m
— W__fnﬁ(m ﬁ)+§v§—u+U(r)+gn. (2.235)
Differentiating this equation with respect to space coordinaig@sve get
Vs R, m
mWJFD{_mD ﬁ+§v§—u+U(r)+gn}—0 (2.236)

If we linearize both equations, bearing in mihq% > 1, we can neglectl,/n
because we are in theHDMAS-FERMI regime were kinetic energies are small:

n=ny()+dn(T,t) (2.237)
Vs = %Dd)(?,t) V2~ 0 (2.238)
For the ground state we have (Z.]193)
1
No(F) = a[# —U(r)] (2.239)
which leads[(Z.234) an@i {Z.236) to
%6n+ O(ngvs) =0 and (2.240)
d
Mo Vs + OU(r) —pu+9gny,+gon) =0 (2.241)
D e
=0
d
& mﬁvsjL ghon=0. (2.242)

Differentiating again with respect tove get

02 oV, PL g
92 NaG
& Wén— O( —% 08n) =0 (2.244)

=c2

This equation can be solved for a harmonic trap ([4]). The energy remains degen-
erated with respect to angular momentum projection:

@, | = ©+/2n¢ + 20,1 4 3n; +1 (2.245)
wr?h, =w(2n +1) non interacting case (2.246)
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The solutions are quite different for the interacting and the non interacting case,
e.g. forn, =0 they are

wy, =ovVl  vs.  of =0l (2.247)

This different behavior can be distinguished in experiments.

High energy solutions

In this case we have to formulate a more general wave function:

y(T,t) =) +y'(7t) (2.248)

Here ¢(r) is the ground state wave function which can be considered as a real
function andy’ < ¢ describes excitations. Inserting this ansatz into the GP
(.166) and linearizing with respect ¢ we get

. 8 hz 2 /
|h§q/:{—%m —u+U(r)}<p(r)+{...}y/(F’,t) (2.249)
+99%0 +99%(2y +y') (2.250)
2
- {_g_rnmz—“+u}‘l/+g¢2 2y’ +y") (2.251)

This can be solved with
v =u(r)e et v (r)e®t (2.252)

Inserting this solution intd (Z.Zb1) we get the following system of equations for
andv:

2

hou = {—s—mmz—mu +29(p2}u+g(p2v (2.253)
h2

—hov= {—%Dz—u-l-u -|-29q)2}v+g<p2u (2.254)

These are the 8coLYuBOV-DE GENNES equations. The, andy; are the wave
function of the excitations whiléw, is the excitation energy.

A different approach for the same problem is to use tlesBLYUBOV transfor-
mation. Since it is more extensive than[in2.3) the solution is only sketched here.
We start out again with

Vn=3 {ui ()i +\fr(r’)aﬁ} (2.255)
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and require the new operators to obey

[a. al ] 8 (2.256)
0

&) = |al.a]]

since we want a canonical transformation which preserves the commutator rela-
tions.
Inserting [Z2:295) into the commutators we get

(2.257)

[ )] = (2.258)
- Iz{ } - (2.259)
[ } - 7 (2.260)
N .Z{ui (P)u (7 ()} =87 (2.261)

Using the inverse transformation
G — / ¢ [ 9/ (1) vy ()] (2.262)

we get

[ [y -v oy, 0] =8 (2.263)
[ & [umm ) - v ] o (2.264)

This is a mathematically rather unusual requirement, e.g. lookifg at[2.263) with
i = j we have

/d3r (uf2— v 2} =1 (2.265)

The HAMILTON ian can be transformed, i.e.

+/d3r1// { D2+M+U+29(p }y/
+§g / d3r (p2 w' v +ti/fp/> (2.266)
=H(p) +constth S w5 (2.267)
|

if and only if theu, andv; obey the BBGOLYUBOV-DE GENNESequations[(Z.253)

and (Z.Z54).



Chapter 3

Fermions

3.1 Free Fermions

3.1.1 General properties

We describe our particles by their momeiitand some other quantum numbers

o which might represent spin projections or hyper fine states. The other quantum
numbers haveg possible values (labelegd in total. For now, our energy depends
only onp, i.e. we do not consider effects like spin-orbit splitting. In the free gas
case we get

p2
szz—rn and (31)
1
T 3.2
n(p.T) = exp<£p u)ﬂ (3.2)
/27rh3f (3:3)

Sincen remains fixed the last equation define§l'). At T =0 we callu(T =

0) = & the FERMI energy.

All states withp < pg = |/2me; are occupied. The reason for this is theuPl
principle which allows at most 1 occupation of each single particle quantum state
(or at most g particles in an energy level whiclygismes degenerate):

d3p A
n:g/WG(EF_ep) (2rh)3 / dpp’ = 96n2h3 (3.4)

3
(2meg)2
672h3

—g &= = &=(n) only (3.5)

47
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- -
£ £ g

. £

F

Figure 3.1: ERMI-DIRAC-Distribution atT = 0 (left) and at 0< T < &¢ (right)

p° 3
g/ 27:71 ~ &) om = 55 (3.6)

If we now consider low temperatures, i.e<0l' < &: we get the following distri-
bution:
Hereu(T,n) # &-. We rather get

n_g/‘ en)£“>+1 &)
3
:/O olgg/(207'r77;36(¢~s—zep)Wlﬂ)+1 (3.8)
o 1
= . d8v<8)exp<#>+l (3.9)

where the density of statege) is

p2
9=9 Geiad (¢~ ) @10

2
:g%/ dp P8 <s—2an> (3.11)
P? P
=5 2h3m\/_/ ( ) om0 (s—%> (3.12)
Oy p5V/2Me grznpz(; (3.13)

Looking again at figure[(3.1) we see, that only the region aragnsl of interest.
Sincev(¢) is analytic and smooth far close tog: we can generally consider for
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every analytic functiorf (¢):

/Odsf - %1) :/udéjf(uﬂ‘)i

R
oxo(2) 1

(3.14)

)
X
©
/N
—uwe | =
N—
+
|

—w | =
\/

1
K 1
+ déf(u—é)—exp<%>+l (3.15)

exp(§ °
_ dé f(u— 3.16
| dgtu el
~ Oﬂdef(e) (3.17)
o 1
d f —f(u—
+ | éexp<§>+l[<u+§> (B—&)
~ ”daf(e)+2f'(u)/md§# (3.18)
0 0 exp(%)qtl
u , ® X
:/0 de f(e) + 2T21 (“)/o dxzo  (319)
1% 7'[2 2/
- /0 de f() + 5 T2 () (3.20)

Here we defined = € — u and used

1 1

=1-—- 21
e (3.21)
uw>T = u~ colastterm in (3-16) (3.22)
2 (-t
/ dxxz e ™= 5 (3.23)
=T
-1 > 1
=y 5-2Y — (3.24)
nzl n? kzl (2K)?
121 w2
=5 Z 5=1; InEI) (3.25)
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Using this so called SMMERFELD expansion we can now calculate the particle
densityn:

e+6u

u(T)
dv dv
T2 2
— T 2
/ de|,_ / dev(e + 6 de|,_, (3.26)
o
> dv
N / £)+ouv(es) + - i (3.27)
6 del,_,
o
n
which means
o suv(e)+ Tzdv =0 and (3.28)
HVIE) ™5 de |, '
dv 1
: — = 3.29
) G|~z (3.:29)
which leads to the shift in the chemical potential
n?T? 72 (T2

Using this, we can now calculate the energy usjng {3.20) With) = ev(¢)

dev(e (3.31)
/ exp T“>+l
o u= 8F+8ud 2T2 d 332
_/o ev(ele+T —(ev(e)) - (332)
&
:/ "dev(e)e+6u(erv(er))
L
E,
2
T2 v
+ 6T {V(SF)+8F 88 ZEF} (333)
2, 20V
_E,+ 6T vie) + e | Spv(er) + gT 3. (3.34)

N

~0 B28)
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Can we understand this solution physically ? We havée) states available for
excitation with energy of the order df, which is exactly what the calculation
gives in Oth order.

The specific heat is

_dE _ 7x?

Cy = a7 = §v(eF)T (3.35)

unlike the BosEgas where,, ~ T3.

3.1.2 Pressure of degenerated Fermi gas

For classical gases
p=nT (3.36)

holds meaning at = O pressure vanishes. For quantum gasess@as well as
FERMI)

_2E

P37

holds. Refer to appendix[A) for the derivation ¢f (3.37). HEre- E(T) for the
guantum system considered. Fa@&HMIons we get using (3.4) and (B.6)

(3.37)

2
23 2 p_%_}n(67rh3n)§

P=3"5% = 5"%m  sm\ g (3.39)
2
1 /6xhd\3 s
_gﬁ(Tf)rw#o (3.39)

This pressure is sometimes calle@AmI-Pressure. It stabilizes the nucleons
against strong interaction as well as neutron stars against gravitational forces.
If we look at high temperatureE > e- we should get the classical behavior plus
some quantum corrections. To get the classical behavior we have to require

e@ >1 andu negative (3.40)

To calculate the classical behavior we note that independently of the statistics of
the particle we have

ety

eT >1 for largeT (3.41)
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and for ERMIONS
1

n(e) = = (3.42)
f exp(#) +1 exp(HT”') +1
ve fot (1-e ) (3.43)
Bearing in mind, that we work with a fixedwe get
H_ € H_ €
g/ 3 Ng ~ g/ 27rh er T 1—eT T) (3.44)
H_ e
= h3m\/ /de veetf (1-ef T> (3.45)
m/2m__z u_
— 92 23 12 eT/dx\/f(e er X) (3.46)
_gm\/_ 3 u e 1
= S TzeT — > (1 er 2\/§> (3.47)
Here we used the definition of tlieFunction
= / dttz let (3.48)
with its properties
M(1+2z) =2 (2) r (%) =7 (3.49)

Therefore our assumption (3}]40) must hold true for the last terfiin| (3.47) to be
small. Neglecting the last term we solve for the chemical potential in the lowest
order (BOLTZMANN case)

woon 2 2728 1 <2n)%h3
g

eT_gmeTz mT (3:50)
N(%) <1 (3.51)

Similarly we can calculate the first correction to the classical equation for the
pressure:

= g/ d3pv(8)nf(£)e (3.52)
2my/2m g_g L_e
327r2h3g/ deesef T (1-ef T) (3.53)

2 m/2m u_s 3 _x oy B
_§gzyz2h3eTT2/o dxxze (1—e eT) (3.54)
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~ 2gMV Ay tetr (3) (1-¢'%) (3.55)

_ gr;\r/z?ﬁe%g 1t 42) (3.56)

Tgr;,\r/zé_?T%e%; (1_ 2\2& + 4\1[2e%) (3.57)

:Tn+ngj\éiT:gT%4\J}é ‘e (3.58)
2#3

_nT <1+ (Z) ”2_7§> (3.60)

ForT " o the correction vanishes of course. Note, that this increase in pressure is
due toonly the FERMI statistics as no interaction was considered. The correction
3

is of the order of % ?_In the case of Bsons a similar term appears but it is
subtracted from the classical value.

3.1.3 Excitations of Fermions at T=0

excitation i
P .
) _"\I _;,} empty
E
.. occupied
- -

Figure 3.2: Small excitations at th&RMI surface (left)

If we look for excitations afl = 0 the system is in its ground state before the
excitation. Afterwards one particle is above therRmI surface leaving a hole be-

low the FERMI surface. Condense matter physicists call this a "particle hole pair".
Since we currently consider no interaction the particle and hole are uncorrelated
and can be treated separately. Even if interaction is considered the correlation be-
tween particle and hole can be usually neglected since their number is small (for
T < &) and, therefore they are "far away".
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particle excitations We add a particle into a stafiewith || > pg. This gives the
excitation energy

2
&= Eg(N) + 2= —Eg(N+1) (3.61)
_r ~ _ P
=g BN BN = BT s0 (@62)

=U=¢r

hole excitations We remove a particle from a stafewith |p| < pg. This gives
the excitation energy

2 2 2

_ _Pr_ _Pe_ P
ep=Ey(N) o Eo(N+1) = o o 0 (3.63)
The energy gain is therefore in both cases
[P R
€= o0 om| 0 (3.64)

Obviously you can get the same result for a particle hole pair if you simply calcu-
late the energy difference beforg,(< pg) and after p; > pg) the excitation

58:%_%:(%_%)+(5—i—%):q+% (3.65)
We can also discuss this in operator language. If we define
i =ugal+vpa (3.66)
with
up:{l P> Pe vp:{o P> Pe (3.67)
0 p<pe 1 p<pe

whereu adds a particle andadds a hole we can rewrite theAMILTON ian (1.8%
with g=0) as

l:'l_ p2 T _E/ p2
—% om B % = o+% >m M

ah, (3.68)

E; is the energy of the ground state and the energy of excitations is always positive
(which was not satisfied before the transformation). Of course the new operators
obey

iplg) =0 (3.69)
where|g) is the ground state (filledERMI sphere).
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3.2 Trapped non-interacting Fermi gas at T=0

We consider the isotropic cadd ()) and large number of particl®&(> 1). The
energy depends only on the quantum numineaedl and does not depend on the
projection of the angular momentum, i.e.

g = &, (3.70)
e, =ho(2n+1+ g) forU =0 (3.71)
. \
c YA — — Y
F ‘-.\ b —— S
K /

Figure 3.3: Schematic view of a trapped particle with lange
Since the system is rotational invariant, we have
X
Vi = T”'Ylm(?) (3.72)
HereY,,(F') are the spherical harmonic functions gnabeys the radial SHRO-
DINGER equation
Zn K3 (Nxy (1) =0 with (3.73)

R +1
G(r) = 2miey U -1 (a7
SinceN > 1 we know that only particles with > 1, i.e. those near theeERMI
surface, can be excited. We can therefore apply WKB approximation.
If we call the classical turning pointg andr,, we can approximate the radial wave
function as

_ G /rz / n_ T
X (1) = o cos{ ; drip,(r) 4} forr, <r<r, (3.75)

1\2
D, () = \/Zm(enl —U(r))—h2('+r722) (3.76)
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This regime > 1 butl arbitrary) is called FOMAS-FERMI regime. To calculate
the density profile we use the semi-classicalH& quantitazion requirement

/rzdr’ p. (') = h (n+%) (3.77)

First we want to calculate the normalization coefficignt

2 o
/d3r|y/n|m|2=1:/dr|%“" r2:/ dr|x|?> thus (3.78)
0

1— / dr s codl. ) (3.79)
=c dr—}(l—f—cos[Z{...}]) (3.80)
M pnl 2
N
=3 drp—nl (3.81)

Since the integral over strongly oscillating terms almost vanishes we can neglect
the second term iM{3.B0). To calculate the other term we differenfiatg (3.77) in
respect ton. Since the integrangd,,(r) vanishes at the limits of the integration we
only have to differentiate the integrand, i.e. differentiating in respect to the upper
bound gives

arz ar2
an 8r2/ AP (1) = 5y Pi(r2) =0 (3.82)
Therefore we have
r
/ ' dr 2 (3.83)
f ﬁm ) — )
e,
—m / dr (3.84)
an P} pnl()
c2, _ mog,
> = 7hon (3.85)

Note that the normalization coefficient is formally independent of the potential
(which is of course relevant through the energy eigenvadjles
To calculaten we note, that

5 Ny = 252

m=—I|

‘98” / dnZf(e) = / de f(¢) (3.87)

(3.86)
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Now the particle density profile is
=9y lw(N)? (3.88)
\%

210n

_gZ| 'cos?{} (3.89)
02+l c2 1
N4n% =2 (3.90)
0 <2+1modg, 1
_Enz r2 7mh on (1+1) (3.91)
2m(s —U(r)) - h2 =%~
m <2 +1
4nhZ r2 Z a (3:92)
m <2 +1 1
“9gm ) T w)d = (3.93)
&
1 _2+1 1+1)°
oy T2 e,y 65
g(r)
1 _2+1 1+1)
47th r2 \/2m 2 r22) (3.95)
g47rh3/0 dx\/2m —U(r)) —x (3.96)
1 2 3 |Xmax(r)
3
= o (@mle—U())? (3.98)

atT = 0. The summation/integration limits have always to be chosen suclp that
remains real.
This result means that if we redefine

p&(r)
gm +U(r) = ¢ (3.99)

we get locally the same result as in the non trapped case

3
n(r) =g é’;g;; (3.100)

but now withlocal FERMI momentum.
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3.3 Weakly interacting Fermi gas

3.3.1 Ground state

Again we work in second quantization and assume there tpdifferent types of
FERMIONS, i.e.

v;() j=1...,gwith (3.101)
{0, 9,0} = {oi®. 9} @} =0 (3.102)
{0,090} = 5,807 (3.103)

This means that for each type oERMION each state is either occupied once or is
not occupied at all, which is of course thewR| principle.

The HAMILTON ian now reads

H= Z/d3r1//J —DZWJ(F’)

Zz [ WO O 0 (3104)

E/—/ —_— ———
A;(F) A, ()
=3 [l e TAT
ZZ [ GO i) (3105)

We use the following assumption:
U =V,6(F—7') (3.106)

This means we consider only short range interactions. This is reasonable because
we consider gases withQp: < 1 andpg ~ density:% ((B) and )). We wrote

Pe here instead op because only momenta~ pg are relevant for any physical
process.
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Using this we get

A-3 [ ol 05020 (7)

+2V / iy I OFOPM  (@107)
J#J
-3 [

Vo ¥ / A ()9 (1), (1) 9, (7) (3.108)

i<V

where we have to exclude the casg ef |’ due to the RuLI principle. If we have
a spatial homogeneous system we can write our wave function as

1= a,€" (3.109)
5

In this case we also have momentum conservation, i.e.

ﬁ1+ ﬁz - ﬁs‘i‘ ﬁ4 (3110)

This will be denoted by a tick at the appropriate summations.

p Z / a7 %
=) — a_ o aa (3.111)
P3) 7 P1)
zﬁ m plp2p3p4 ij’ Pgl" P3 1] Py)

In this expression we obviously see that if we have only one type&aifons the
interaction term vanishes. This is because we consider only s-wave scattering (i.e.
lowest order). If we consider for example the two particle wave function which
has to fulfill the RRULI principle

If we look at the state with a given relative angular momentuai these two
particles we have

¢ (T, —T,) = (1)@, (F,—T;)  leading to (3.113)
@i (F—Tp) = —(=1)'g; (1, =) (3.114)
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Thus we have two cases to consider

1=0,2,... (Pij:—¢ji—\/§(|>|l>—|l>|>) (3.115)
=13 gy =gy = (M) +IDI) (3116)

This means we have to hage> 2 for even relative angular momentuim (3115)
andg > 1 for odd relative angular momentum (37116). Since we consider only
| = 0 we therefore need at least two types @RMIons to have a non vanishing
interaction.

Returning to the non interactingAiLTON ian we get the ground state energy

3
ZZ pJ DJ ZZm pj ZnJS'gF (3.117)

Here we used(3.6) and considered the ordinary case for vihdies not depend
on j. Treating the interaction as a perturbation we get

1_V°Z Z p3, %p,j p21> (3.118)
— T +
=V Z Z <Gl|02j’ p2j'><ap1japlj> (3.119)
I'<j P1P2
_ _y 99-1) 1g-1,
=Vo ZJ plzznpzl pLJ’ =Vo— 5 — 2 NNy = VOET“ (3.120)

In (B-II8) the operators create two particles and two holes. The resulting state
will usually be orthogonal to the ground state, unlegs= p, andp; = p;. We
further assume that; = n, = --- = ¢ which is true of course only ifio external
fieldsare present.

In second order we get

[(elHind 9
E,=Y —nt= (3.121)
? % Bg—Ee
Here|g) is the ground state arjd) is any state possible with two holeg,( and

p,j’) and two particlesig;j andp,j’).

Pz + P5— P2 — P}

(3.122)

As required for any energy difference in respect to the ground sfate, (3.122) is
negative. Now[(3:121) becomes (cf. appendix (B))
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/npljnpzj/ (1_ np3j> (1_ nij/>

P3+p3—pi—p3
2m

=Gy S
I<I" By

(3.123)

In respect tap,, p, < pg we have no problem to integrate (sum up). The conser-
vation of momentum fixeg,. p; however can take any value larger than The
third sum (or integral)

* 1

d3p, = (3.124)
/pF * P35

does not converge. To eliminate this divergency, we can use the same technique

as in section[(2]3) pade|28 and userB\ approximatioff;

Arhla 1 4Amh?a
—\V.—V. 12
0=Vo 2 g 5 m (3:125)
2m
Anh?a  [4mh?a\? _ 1
= Vo +< = ) TR (3.126)
PePe =—5m "

Inserting this expression fdy, into (3:12D) and[(3.123) we can get rid of the
divergent sums

4mh?a

E,+E,= Z Z N, Mo, it (3.127)

j<)' PP

2 o (1ien N(1-n )=
<4nh2a> s z/nleanJ’ [(1 npgl) (1 np4,1’) 1}
- . 2+ 2_n2_n2

m 5% Pa pszmpl P2
e L L e WL Tt Ch LIS St R L

The addend of (3.127) with... } is symmetric ifp, p, is interchanged witlp;p,.

On the other hand the denominatoaigisymmetriaunder interchange. Since the
sum runs over alp; it has to vanish thus preventing the ultraviolet divergence
since now three out of 4 momenta are inside the sphere and the fourth momentum
is fixed.

4nha
E1+E2: Z Z npljnpzj/
i<) PPy
. 4rh?a)° /My M, i (npsiJrnpmi’) (3.128)
m .Z, . pﬁ+p§fp%*p% .
<I''B -~ 2m

1The summation runs over two momenta as we have two particles in the intermediate state
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= ngep<9—1) {gxqu%l'n(z)x} (3.129)

HereA is the Gas Parameter

_2ap: _ mp: 4nhfa
A= T o m - Vi<l (3.130)

Wherevj is the density of states.

3.3.2 Decay of excitations

We want to discuss the life time of excitations, i.e. the inverse scatteringttime
We discuss the regime 0f < &.

J:II.
T N\
/
[ Pe 1
IIIH |

Figure 3.4: Schematic plot of excitations and scattering arounder&Fsphere

The excitations 1 and 2 can "collide", i.e. interaction occurs. The lifetime of the
excitation 1 is according toERMIs Golden Rule (appendjX C)
1
; ~ az/dspzd p:la/d pg/ 19) (81+82 — 81/ - 82/) o (ﬁ1+ ﬁz - ﬁ]_/ - ﬁz/)
x N(Bp)(1—n(Py))(L—n(PBy)) (3.131)

The first line is the classical value while the second line takes the quantum statis-
tics into account.

€y +Ey =€ +8&>2¢

-T<
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I.e. the differences,; — e andeg — €, are positive and of the order of temperature
T. First we expand the energy momentum relation near #remMF energy:
e(p) ~ e+ Ve(P— Pp) for p~ pg (3.133)

58~T:>6va~T:>5p~V1 (3.134)
F

We can now calculated the fraction of particles involved in the collisions by di-
viding the number of particles in the shell in momentum space of V\(}thby the

total number of particles:

p%Sp_@ T T

— = - =——x1 (3.135)
Pr Pr VEPE &
If we now look at the final states we have
26 < g t+€&y S26+T with (37132) (3.136)
< &  Seg+T (3.137)

Without the RRuLI principle the outgoing particles could have any energy allowed,
i.e. between 0 ande2 +T. But with FERMI statistics being taken into account
we have only a 1‘ract|0F}F < 1 of final states available. Th31) becoﬁnes

1 T\? 1-0
= ~ nalve (—) o (3.138)
T €

The first three terms are the classical value, while the fraction is caused by the
PauLl principle. The square originates in the fact th&rM| statistics imposes
restrictions on the possible momenta of the incoming and outgoing particles.

At T = 0 calculation shows

1 £
—— ~ndve | — ). 3.139
7(¢) na Ve & ( )
The energy of the excited particles obeys
1
gex_ ~ T > DEG)(_ ~ %. (3140)

Therefore the imaginary part of the excitation spectrum is much less than the real
part and hence the excitations are well-defined.

2The exact and rather lengthy derivation is not included here
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3.4 Landau-Fermi-Liquid

First we considered the non interactingfivii gas where we have the filledRMmI
sphere as ground state and we were capable of describing all properfiesfer
causing excitations (particle transitions) nearlf we now switch on the interac-

tion adiabaticly the behavior of the system remains similar to the previous one. In
the interacting system a particle disturbs locally the surrounding particles. If we
consider the particle together with the disturbance as a new particle (quasiparticle)
we can transfer our previous discussion of the non interacting case to the interact-
ing case. This procedure is calledDAU conjecture and it can be justified by
using a more complicated approach based e &\ functions technique.

We are not interested in the geneEal- p dependency but only near th&Rmi
surface as we have seen that the most important physics takes place there. We
describe the ground state of an interacting (normaR¥# system as a ERMI
sphere filled with quasiparticles. The number of the quasiparticles is the same as
the number of particles by the above conjecture, thus

.

62273 = Nap (3.141)

g
This means the BERMI momentum also remains the same.

This FERMI liquid approach is experimentally favorably because as — we will
show now — the description boils down to a few, experimentally accessible param-
eters.

If we briefly assume we have only one type @HMion we can relate the change
in energy of the system to a change in the distribution function as

SE =Y e(p)on, (3.142)
i

which provides the definition of(p) for quasiparticles. ANDAU introduced the
f function which determines the change of the energy of the quasipaetiple
due to the change in the distribution function:

8e(B) = 3 fyy0ny (3.143)
5

The LANDAU f-function is a direct consequence of interparticle interaction and,
as we will see, it actually governs collective behavior of the system.

We can now expand the energy-momentum relationship around the most interest-
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ing point, the ERMI momentum:

e(P)=u+Ve(p—Pr)  with (3.144)
B
= om + interaction (3.145)
_ P
Vg = e (3.146)
m" = m+ interaction (3.147)

Thus the complicated energy-momentum relation is substantially simplified since
only momentgp ~ p. are important. As expected, the energy depends only on the
absolute value of the momentum.

If we compare this result with our previous discussions ((3.117) gnd {3.120)) in
the weakly interacting range

4Arh?al
E=E,+ 55 Y nging (3.148)
m 246 9P
p?
E,= %zfnnﬁi (3.149)
we have
2 2 2 2
_p°  4mhca _ p°  A4rnhca
&(P) = ot Z i = 2m T _;nj, (3.150)
p'i#) i#)
which means that
2 Anhla B}
u=e(pg) = g_r; - n;, m'=m (3.151)
i#)
and therefore
Je;(p) 0 =]
j
=f , = 3.152
8nm. pip’ % i ( )

in first order in the interaction. If we also consider second order terms we get
rather complicated terms with non trivié) lengthy expressions ama® = m.
The effective massn* can be measured experimentally e.g. in the specific heat

(cf. (3:3%) and[(3:13)).

7'62
c= gv(u)T with (3.153)

_ Mpe
v(H) =5 239

(3.154)
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In our regime of low temperatures, = ¢, and we thus do not have to distinguish
between them.

We now want to calculate the effective mass via the f-function for general
FERMI liquid. The liquid moves with the velocity in the laboratory system thus
generates the current

j=mm=7% piig, (3.155)
o]

The distribution function in the frame of the moving liquid relates to the distribu-
tion function in the laboratory as follows

fiy; = nj (£(B) — B-V) = n(e(P)) + 8ny, (3.156)
an..
Snp.j = 8—5158 0e = —p-V+interaction (3.157)

The distribution function of ERmIons is a step function dt = 0 thus its deriva-
tive is ad-function. The current now reads

- on..
7= B(nj(e(p)+ony ) = Y p=Loe(p) (3.158)
o] pJ

The first term in the summation vanishes because the filistir sphere is rota-
tional invariant and the summation runs over all momenta.

8anjj 1
e =—0(e(p)—w) =~ -3(p—pp (3.159)
-3 B (430 p0) 8(e(m) (3.160)
_V_F (ZPF SPegdn / 1852 (pe9) (3.161)
o 3 B / O wse( :—in jQ s5e(pd)  (3.162)

In (8.162) we used (3.141). Looking at the shift in energy assumig) = pgV
we get

5e(P) = —P-V+ 3 F5i50Ng (3.163)

_ B st
_ pv+ﬁzfmﬁ,j, L se(p) (3.164)
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VFZ/ 21mh)3 fiw ¥ (P— Pe)oe(P) (3.165)
dq’
=~Pv- (25';1) 4 3 | 2 Toipe O (PeE) (3.166)
J
(B:12%) and[3:154)
do’ /
=—E5~V—/ 4r Zv mp gy oe(Pee) (3.167)

This is interesting only fofp| = |ﬁF| and we can write usingy = pgé

5e(Ped) = —Ped-v— / &)6e(p)  with (3.168)

Fee)=Y j,(u)fppéijé,j, (3.169)
J/

= z (2 +1)FP(8-&) (3.170)

HereR are the IEGENDREPolynomials.
To solve this we make the ansatz

0&(Pe€) = ApeE-V A= const (3.171)
Q/ — !/ /
AB.V— —8.V— A/ 3 @+ IRREE) &9 (3.172)
P, (&)

= —8.V-AFR8-V (3.173)

_ 1 _ PeEV
A= _1+F1 0e(pe8) = _1+F1 (3.174)

Thus the current becomes
- 3 Pe dQ

= —V—Fn {—1“: ] e —8(&-v) (3.175)

3 pF1Vnm*

Ve 1+F 3 14F

v (3.176)

, 1
=m=m(1+F)  with 4 é,é = 3] (3.177)

whereF, is usually positive. The value & has to be derived from an appropriate
model or from measurement. Only for very few systems — e ERMH gases —
direct calculation is possible.

We now want to discuss some non trivial examples.
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3.4.1 Zero Sound

Using a semi-classical approach we can describe small density fluctu&tipﬂs
n around the ground state (equilibrium) as

The kinetic equation fon; (B,F,t) reads

8n

8‘[ e)d.n

j

where the collisional term vanishes fbr— 0 because ~ T2 — o which corre-
sponds to the so called collisionless regime,> 1, wherew is a characteristic
frequency. Therefore the kinetic equation in this regime is

n.
a_tJ”Dr” —Org;04n; =0. (3.180)
The first two terms describe the ballistic motion of particles while the last term acts
as a non trivial collective force. This equation has to be solved self-consistently
because small fluctuations of density generates the force which in turn changes
the density and so on. But first we want to rewrite the equation

aén;
5 +VDr6n mem (p— pF))(éDr)Snrj,j,zo (3.182)
86nm
pr +VDr5n +6 (P—Pg) ij/fp ém,, (€0) ,=0. (3.183)

Here we used

an(p) dnde 1

9p :%Tﬁ:_v_,:é(p_p':)v'::_éﬁ(p_p':)' (3.184)

To solve this, we choose the ansatz

sng, = 8(p— pp)x (@ K. (3.185)
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Inserting this into [(3:183) we get
0= (—iw+ik-V)x (&) +

; v /
% fo eyt (6K) 3(p—Pe2 (@) (3.186)
(0) - kVF)%(é) = R é%/ fp,:éjﬁ'j/5(p_ pF)X(é/) (3187)
=k-€ ae g 3.188
o JZVV(H)VF r X&) heipe (3.188)
/
—k-8 cil—iiF(é‘-é“’)x(é’)vp (3.189)
” /
x(8) = Vek-€ dQ F(8-&)x(®). (3.190)

This is difficult to solve. We assume the simplest case, i.e.

F@&&)=F, (3.191)
and consider all further deviations as higher order terms. This leads to
vk-& dQ’
8 =————F 4 3.192
40 o—vkeol x(€) (3.192)
K-
_y VeKE (3.193)

If we definew = vkswith s=const andz = cogk-&') and integrate both sides of

(B.192) overd2 we get

2
zpofll%zsézz%/lldz{_l—;ss} (3.195)
:FO{_l_gm {(:ﬂ} (3.196)

Fio+1_§| [&JF;] (3.197)

If 0 < Fy < 1 the left side became huge therefsitgas to be close to 1:
s=1+¢ ekl (3.198)
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which leads to

1 2 1
=In{-)==—+1 3.199
2" (8) I:oJr ( )
= €= Ee_F_Zo (3.200)
=3 _

This is a collective mode in a degenerated collisionless regime (zero sound) with
the velocity

2 _2
Co= Vg (1+ 2© Fo) ~ Ve (3.201)
compared to sound in the hydrodynamic regime:

. dp _1dp 190

2 3
~9p mon man|3" 5 (3.202)
E
2
10 (2 1 6ﬂ2h3 1511 67r2h3 3
= man (5 P ) aééa 9 ”) (3.203)
1 V2
:§<%) = c, = \/:_% (3.204)

This is ordinary hydrodynamic sound.

If F, was negatives became a complex number with real and imaginary parts
being of the same order. Hence, in this case the collective mode is overdamped
and of no interest.

3.5 Bardeen-Cooper-Shieffer-Theory

3.5.1 General treatment

If we consider two ERMIONS in vacuum we have a simple quantum mechanical
problem. We use the frame of reference where the center of mass is at rest:

P=p,+p,=0 (3.205)
Here we can write the SHRODINGERequation as

{ i (0$+0%) +U, (T, —T )} w(Ty,T,) = Ey(Ty,T,) (3.206)

2m
y(r,T,) Zc

? FZ

(3.207)
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i.e. we decompose the wave function into plane waves. Inserting this decomposi-
tion we get the 8HRODINGERequation in momentum space

(81+82)Cr5—|— rjZUl(ES— ﬁ’)cﬁ/ = Ecﬁ (3.208)
where
p?
& =8=5- =8 (3.209)

since both particles are identical. Rewriting theHRODINGER equation once
more we have

(E—2¢gp)cs = Uy (P ri’)crj, or (3.210)
ﬁ,

1
Cp= g %, ;ul (B— rj’)cﬁ, (3.211)

This discussion is still exact. Now we use a model for the interatomic potential

V, 0<epe, <o
U(p-pH=4° —PP= (3.212)
0 otherwise
In ordinary space this expression looks rather strange.
Using this model we have
1 _ ~
Cs= g ng(a(a) - ep)VoﬁZcﬁ, (3.213)
The tilde denotes that the sum obeys the constraint
ep< @ (3.214)
To solve this expression, we sum over all coefficients
~ ~ 1 ~
Zc =V, —Sc,, (3.215)
p=Vo2 E_
5 5 E 28pﬁz p
= 1
& 1:V°%E—28p (3.216)

Since we are looking at an attractive interaction and more specifically for bound
states we have

Vo=—|V,] E=-2A (3.217)
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whereA is the binding energy per particle. Using this we have

1= §|V°|%F8p (3.218)
vl | 6dev(£) (3:219)
g [oe e 020
:§| O|%: X%‘; (3.221)
_ O‘Té? fd (1_Aij2> (3.222)
=| O|27227;1{\/5_—%arctan(\/—\/§>} (3.223)
~ V. |2 2h3 {\ﬁ \F} (3.224)
:\Vo\v(a_)){l—g %} (3.225)

Here we assumed thAt< @ and thus the arcus tangent can be approximated as
3. Solving this we have

A 2 1
5= ) (3:229)

Therefore we have threshold (i.e. a minin\4J|) before a bound state appears.

Now we want to consider two ERMIons on top of a filled and frozeneRmI
sphere. Frozen means that we will not consider interactions of the particles inside
the FERMI sphere with our two extra particles. In this case we have

€p, €y = EF (3.227)

! Y U (B8, (3.228)

C p—
p _
E—2¢p 6'=p,

We assume for the potential

e <égp e, <e+0
U (p-p')= Vo &S Epfy et (3.229)
0 otherwise
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Now we define
Sp=¢€p—&>0 (3.230)
and note that the energy of the ground state is now
E =2e—2A (3.231)

whereA is the binding energy per particle.
Again we can rewrite the SHRODINGERequation in our case as

O(w—&p)
Cy 2875y |V0|Zc (3.232)

The tilde denote§ , < o.
Using the same method with< @ < & as before we get

1.~ 1 1 ® 1
_ EM’%ﬁép _ é|v0|/0 dé viee+ &)y 2 (3.233)

1 Ao\ 1 ®
~ é|V0|v(z-:F) In (T) ~ é\Vo\v(e,:) In (Z) (3.234)

In the last step we approximated agair« . solving this for the binding energy
A we see, that there @lwaysa solution regardless of the strength of the potential

- 2
A= we MVE) COOPER1956 (3.235)

This is of course a toy model. The solution including the interaction between all
particles — not only between extra ones — has basically the same form except the
factor 2 in the enumerator of the exponent is replaced by 1.
This result means thateRMions with p and p’ become correlated, they form a
"COOPERPair".
The shift in energy can be approximated as

A

VEAp~ A & Ap ~ v (3.236)
F

If we denote the size of the correlation&sve can approximate

h h h & h

R VAU (3.237)

Ap AT peA T pe

This means the the size of the correlation is much larger than the mean interparti-
cle distance. Therefore a mean field theory can be applied for this system.

&~
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It turns out that the region of temperatui®® aroundT. where fluctuations be-
come important can be estimated as

A 4
5T ~ Ty (8—) (3.238)
F

This is so small that it cannot be found experimentally.

3.5.2 BCS Hamiltonian

The goal is to modify the HWmILTONIan (3.IIL) in such a way that the BCS
relevant terms are clearly visible while other terms (which are not relevant in this
context) are put aside. We assume two typeseg¥ionswhich we will denote
as+ and—. In this case the interaction part ¢f (3.1.11) can be writtéh as

RV,
Hie = VO; Ap,+Op,—Op,—Op + (3.239)

We are not interested here in themvi-liquid type of renormalisations due to the
interaction but only for the terms responsible for thed®ERcoupling. Since we
neglect all other terms we can write

Hing = — > {A**Lp,am +Aag+ag_} +other terms (3.240)
P

We approximate the operatarby its mean field value and note, that the first term
destroys a ©orPERpair while the second term creates a@ERpair. A has to
be calculated as

A=—|V Z(a_p_ap+) (3.241)
p

This is a HARTREE-FOCK type of equation, i.e.[(3:240) and (3.241) have to be
solved self-consistently.

We can choosa real since a space independent phase would be irrelevant and a
space dependent phase would cause a probability flow but we are looking for a
stationary ground state solution. Thus we have

1 T t 1
Herr = %%apjapj—A%{apap++ap+a_p_} (3.242)
2 2
p PE
~om =~ om 3.243
ép 2m H H 2m ( )

3for simplicity we now always write instead ofp
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This case is different to the one encountered in secfionh (2.3) because here we have
to calculateH andA simultaneously.
Again we can make aBcoLYuBoOV transformation

- PN 0py = Upay, +Vpa =+
apj = Uplly; +Sign(j)vpd’ ;= ¢ PH— P PET R e : (3.244)
Clp_ = Upap_ —Vpa_ = —

The transformation has to be canonical, thus

IO TR U S i
{apj,up,j,}—{apj,ap,j,}—o (3.245)
~ o~ |
(gl b = 00y, (3.246)
We again assume the most simple arrangement, i.e.

and insert the new operators in thedI anticommutating relations:

{apj,ap,j,}:{agj,a;,j,}:O (3.248)
{ap by b = {uptip; + sign(i)vpi_, .
up&‘;,j, +sign(j)v,d_ ;) (3.249)
= UpUy 8,56,/ +sign(j)sign(j’)vpvp,Spdej, (3.250)
= 8,58, (W5 +V3) (3.251)
Thus we have the requirement that
up+ve =1, (3.252)

which means that, andv, have to be expressed as sine and cosine.
Finally the transformed EMILTON ian has to have the following form

Herr = Eg+ Y €piif;d,; (3.253)
pJ

The coefficientsi, andvy can be calculated from the dynamics of the system. To
this end we calculate

A o - ot~ ~ o~~~
_ 2 ~ o~ ~
— %{%’\(ap’j’apj+apjap’j’>jap’j’ (3.255)
=By Oy
= —spﬁpj (3.256)
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The other commutator we do not need to calculate because

+
SO . o
[Hefﬁ apj] - <|:Heff7 apj:| > - 8papj (3257)
Now let’s use this to calculate the commutator
[ﬁeﬁ?apj] = [F'eff?upapj +3i9n(j)Vpaip,j] (3.258)
— Up(—€&p)dp;+SIgN(j )Vpepl. | (3.259)
! tt ot
= —&pay; —A% (ap#afp_apj — apjap%afdf) (3.260)
_ Tt
= —&pay; —A% {apura_p,_apj
t t
B <5pd5i+ B apH—apj) C‘_u_} (3.261)

_ L T T
= —&pay, A% {ap/+a—p'—apj

T T T
— 8,8 al, +al, <5pip,5j_ - a_p,_apj) } (3.262)

—&pap;+ A8 al ) —AS al (3.263)
= —pap;+Asign(j)a’ (3.264)
— —&p (upfip; +sign( vpi' , )

+ Asign(j) (upaipf (+ Sign(— Vo, j) (3.265)

Conferring to [3:299) we get thedB0LYUBOV-DE GENNESequations:
—SpUp — —ngp — AVp (3266)
ngp - —épr‘f’AUp (3267)

which are solved by

£p= /D2 + E2 (3.268)

u3 = % (1+ @> V5= % (1— @> (3.269)

€p €p

The solution is very similar to the 8sE case.

It follows from (3.268) thaky, is always positiveg, > A > 0.

The pairing energy i€\ < & which causes the edges of therdmi sphere to
smear out. The BCS gap in the spectrum can be experimentally observed because
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Figure 3.5: Spectrum of ERmIons with GoPERpairing (left) and plot olu and

v as a function op
the medium is transparent for all external perturbations with frequeney2A

which couple to single particle excitations.
We now want to calculatA:
A =Nl ¥ ((upd_p- —vpih, ) (upp; +vpi, ) (3.270)
P
= V| % UpVp (<a_p_aip_> . <ag+ap+>) (3.271)
= Vol ¥ Upvp(1—2np) (3.272)
P
[e2 _ g2 )
= |V, Z }Lgptanr(ﬂ) = A, Z M (3.273)
0&£2 ¢ 2T 0L 2
where we used
ot ot n 1
np= (&) = (815 8 p )= —— oo (3.274)
exp(T> +1

which is the number of particles involved. Thus we have
tanh<§—$>
_ — /N2 g2
1 |Vo|% 26, €p A%+ &5 (3.275)

This equation determine§(T). We are mainly interested in the gap n&ari.e.
tanh( 22
<2TC) (3.276)

1=|V|
O% ng’p
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which might become problematic f@, — 0. To solve this, we have to use the
scattering length analogous {o (3:]125) and rewrite the expression as

2 tanh| .22
1— 4rhe|al Z{ [ZTJ 1 } (3.277)
p

m 25p 2%1

> o tanh| 5%
— %W/_epdé V(& + &) { 25[?6] T 2(E -1H:F) } (3.278)

p*—p?
I {W - 3} o
R o
B /Ooodx{tanh[a(xz Ly 14 tanh[xo;(i@l— 1)] } (3.281)
- /1{ X (tanh[a( - 1)] - 1) |3 — dxx#«[),(,_]
+%|n % tanh(a (- 1)),
_/Owdx%m ij Coség{ﬂ})}‘ (3.282)

Here we note, thaf(3.2]/8) converges.[In (3}280) we substifutegh-x and used
the definition of the gas parameter

arh?(al 2/a|pe
= = 2
A - v(ep) s (3.283)
The parametew is defined as
&
o=—>1 (3.284)

2T

In the last step, we integrated by part and noted, that the main contribution to the
integral comes from the Regime

X2 —1| ~ % = x~ 1. (3.285)
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Using this, we have

1— ,1{ — tanh(20.(x— 1))

R e P B
for 2@
afam(®) [o)  ew

Herey~ 1.78 is the BULER constant. Solving foll . (whenA = 0) we get

8 —2
To = ”2 ecet = 0.6lee (3.291)

Now we want to calculaté = A(T). First we look afl ~ T i.e.

TC

<1 (3.292)

We expectd(T) < T.. Therefore we can expand (3.268)

AZ
ep~ |Ep| + = (3.293)
PR 218

similar we expand[(3:277)

1p]
 4nr?fa) ( p2 9 )ta“h<f>_ 1
S %{ Y AEI0E]) 26 o2 (3.294)

2m

2 )
TR [ deve e

A2 ) tanh(‘g—?') 1
1 — 3.295
{( e 5) 2 27 (3299
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A2 o 19 tanh(%)
+5 _ng§V(§+SF)E£T} (3.296)
B 8ye ¢ Te
#{n(*7) o0 (F)}
3
4rchi?|a| A ® .19 tanh(ﬁ)
+ ?v(sF)/ e (3.297)
B T A2 e 19 tanh(})
=1+2 {m <?C) +ﬁ/o dxxaxTz} (3.298)

In (8.296) we used that the integrand is proportiona£to® for large|& | and that
we can replace the lower integration boundary-by because the integrand is
therefore strongly localized around 0. In the last step we substifuted x.

To calculate the last integral, we use the expansion of the hyperbolic tangent:

X l 1
tanh( - ) =4 3.299
an (2) Xn;n2(2n+l)2+x2 ( )

If we use [3:299) to calculate the last addend 01 (3.298) we get

4/ dxx&x > 7r2(2n+11)2+xz (3.300)
_4/ ax ZO 72 Zn;?)( 71 x2)2 (3.301)
- _SnZo ﬂ3<2nl +1)3 /ow <1f>y/2>2 (3.302)

7:83 (1_ %) G /0? coiqzm cog'(¢) (3.303)
B _%%%5( )= —75,9 (3.304)

We used the substitutions= (2n+ 1) +y andy = tan(¢). The sum is calculated
analougsly to[(3.24).
Furthermore we are interested at temperatdreoundT. (8:292) so we can
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approximate[(3.298) as

Thus we have

82 T-—T
AT) =) opra Tey | S
W=\7Em |
——
~3.06

81

(3.305)

(3.306)

(3.307)

The pairing energy grows rather rapidly if temperature is lowered. Now we want
to look at the other extreme, i.&(T = 0) = A,. If we subtract[(3.275) al =0

from (3:276)
m 1 1
dnllal ~ % {z—ep - g}
3
m tanh(ﬁ) 1
Mmm_% 2, %
we get

tanh( 22
Sifssd

1 _ tanh(x)

2 X
A
21 (Lo
+(22)

= V(&) /Owdx

(3.308)

(3.309)

(3.310)

(3.311)

(3.312)

(3.313)
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:v(eF){ In x+,/x2+(2A—>2 — In(x) tank(x)

00

0

Jorin )
~ v(ep) {n( —In(ﬁ—_&)ﬁn( 3N (3.315)
=v(g)In (Z%:;) (3.316)

In (8.312) we again used thét..} behaves ag |2 for |E| — o and we again
extend the integration from-g; to —o. Then we substituted = 2T-x. After

partial integration we retained the integral (31289) which solution we inserted.
Therefore we have

T
By = Te = LT6T (3.317)

Figure 3.6: Pairing gap as function of temperature

It is important to note, that this is a single particle spectrum, i.e. no collective
modes are considered. So if an external field, which aalgon single particles,

acts with an amplitude less th@nno excitations occur. The question remains
whether other types of excitations with amplitude less thame possible.

The GoLDSTONEtheorem (pag€ B3) ensures that at least one branch of gapless
excitations exists because the continuous (gauge) symmetry is spontaneously bro-
ken in a superfluid phase: the energyiLTON ian) is invariant under the gauge
transformationy — €%y with a constanty, E(€?y) = E(y), while the ground

state and, as a result, anomalous correlators are not. For example,

(E2y) (%)) = X (yy) # (yy) £0. (3.318)
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Since we have

ep 2250 (3.319)

the choice of a phase breaks the symmetry. So if we consider now a phase which
varies slowly in space and time, i.e. the gap is of the form

Dy — Dye? ™) (3.320)

we describe collective modes. To calculateve have to redo the previous calcu-
lation except for the fact tha is no longer real. The AMILTON ian is now

R R K2
J
_ / o { &g, + 09T T} (3.321)

Here the first addend will be called},.
Once more we use a time dependetd®LYUBOV-DE GENNESequation (i.e. a
canonical transformation):

W=y {uy (7,03, +sign(j)v; (r.0a, |} (3.322)

The calculation is similar to the ®sE case and it is therefore not repeated here.
It can be found in the literature. The results are

.. du -

|ha—t" = (Hy— u)uy +Av, (3.323)
. dVy - .

IHW = _(HO - “)Vv +A Uv (3324)

We assume that the phase is switched on adiabaticly, i.e.

AP ) 222 A, (3.325)
This way, the solutions take the form
uy (F,t — —o0) = U0eient (3.326)
vy (F,t — —c0) =g 1t (3.327)
Using this [3:323) and (3-3R4) read
e ul? = (Hy — p)ul® + Ao (3.328)

g9 — (|:|o _ N)V(vo) + AOU(O) (3.329)

1% 1%
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Thusyv is clear at = —c. Now we have to solve self-consistently

AT, 1) = [Vo(W_ (T, 1) wr, (T, 1))
=Nl S uv(r,t)ut(?,t)tanh(%>

where we took only the leading term in the fluctuations.
The probability current af = 0 reads now

ih

f=—p J (0% — 091 )
in g .af
~2m z Z (Vvl D\i\klz N val\f‘k/z) <a"1*ja"2_j>
] ViV
5V1V2
in

The same way we calculate
2
n= Z Z |Vv|
] Vv
If we define new functions

u, =€, v, =e?,

(3.330)
(3.331)

(3.332)

(3.333)

(3.334)

(3.335)

(3.336)

which obey the same initial conditions (becags&anishes at = —) (3.323)

and (3:324) simplify
. d O\ — h? 2 _ _
(lha —h¢) Uy, = (—— (O+i09¢) —H) Uy +AgVy

2m
o d .\ = h? N _ _
(Ihﬁ—i—h(b) vv:—(—?n(D—lﬂqb) —,u)vv+A0uv
We have now

_ou h? _ _
ih— = (—%Dz—u> Uy -+ gV

. R? , . h? NP
+{h¢+%(ﬂ¢) _IEDQ)D_IZ—mD q)}uv
OV h? _ _
|h—:—(—§nD2—u)vv+AOuv
h2

?n(w)z—ih—;mpm—ih—zm%}vv

2m

+{—hq’>—

(3.337)

(3.338)

(3.339)

(3.340)
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If we regard{...} as perturbation we can apply time dependent perturbation the-
ory here. We We will not present detailed calculations here, rather make some
comments.

When on the basis of theddsoLyuBov-DE GENNES equations (...) we con-
sider single-particle excitations, we restrict ourself only to solutions with positive
eigenvalues, > 0. But those are only half of all possible solutions. The other
half contains solutions with negative eigenvalags< 0. The latter can easily be
constructed from the former. Namely(if{”, v{?) is a solution withe, > 0, then,

as can be easily checkeg@(?*, —u(%*) is a solution with the negative eigenvalue

e, < 0. Together they form a complete set of solutions and, therefore, they both
have to be used in studying the perturbedld®LYuBOV-DE GENNESequations.

In this way we get the answer

Uy, = uvo) e ' (1+ derivatives ofp) (3.341)
vy = Ve &t (14 derivatives of) (3.342)

After some calculations the current can be written as

- ik . ¢ ¢
- (0)12 _
j ZmZ {2|D¢\vv ] +O<AO ,AO)} (3.343)
h h
— ED“’ Z MO |2 = ”oﬁw’ = NngVs (3.344)
h
vo=—10p (3.345)

This result is rather unexpected. It is not obvious that the constafiom the
homogeneous case is the coefficient and not e.g. a fractiog.ofAs can be

Figure 3.7: Schematic probability flow in BCS

seen in figure[(3}7) most particles inside trerMI sphere are not affected by the
probability flow.
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Now n andVs have to be solved self-consistently to get an equatiorpfoHere
we want to get the solution more easily:

E(¢,n) /d3 { mn -+ E(n) — un} (3.346)
E(n) = Eon(n) + B + Ecooper p. (3.347)
= n§8F"" O(a) + Ecooperp. (3.348)

S N——

~e

>N

HereE,, describes free particles in the normal phase. We can estimate the pairing

energy as energy gain per pair times number of particles affected, i.e.

3
m m
Ecooper p.~ (—A)V(ep) ~ —~gA2 T E — —gn? 5 (3.349)
Pe h
N2 A2
~ —N— ~ —N& (—) (3.350)
& &
- | ||
|
4,
£ ! 2A

2
Figure 3.8: BCS gap

Again we note that we consider only slowly varying phase.
If we look at (3:34p) with terms up to second order in phasea@maemembering

JE
Ny: 3= u (3.351)
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we get

2
E(¢,n) :/de’r{%mrb (%ng) + Ey(ng) +lineay

1 0%E

+5 55| (6n?) (3.352)

My

17/ 3 h? o, J°E
:Eo(n0)7/+§/d r {noﬁ(Dq)) + W

5n2} (3.353)
Mo

Here we remember that~ [¢ and therefores? already second order so we can
usen = ny.

If we look at this from a quantum mechanical point of viés becomes an oper-
ator. It has to obey

[¢(F),on(F")] = —i8 (F—T) (3.354)
and all other commutators have to vanish.
We have
5= (.6 = 2" amg) (3.355)
TR T 2R Om :
h R -
= —noaDZ‘P = (noEDq)) =—0j (3.356)

that corresponds to the continuity equation. On the other hand

s 1id%E, .. 19%
therefore,
o= o Q. (3.359)

Egn. (3:358) and(3.359) are wave equations with the wave velocity

Ny d%E
= P (3.360)
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Using (3:5) and[(3]6) we can calculate the velocity

= —=—
2
man0

2
_Ng 13/6x%h3\3 92
- m2m5 0

, Ny 92 131 67c2h3n 3
052m\ g ©

g

(3.361)

(3.362)

(3.363)

(3.364)

This is caused by density fluctuations and differs from zero sound, it is the same as

the hydrodynamic sound BsoLYuUBOV-ANDERSONsound). If the fluctuations
couple to density, this GLDSTONEmode can be excited even if the excitation is

less tham.

3.6 Andreev reflection

_ superfluid phase

normal phass
—

_ __,,s"

g<h {

Figure 3.9: Boundary between non superfluid and superfluid region

Suppose we have a situation where the fap not a constam, but depends on
the coordinatexin such a way that it is zero for negatix¢normal phase), then it

increases to its equilibrium valuk, in the transition region of the widt§ at the
originx= 0, and is equal td, for positivex (superfluid phase), see fig.(3.9) (this
situation could be realized if a magnetic field is applied to the ypartO of the

superfluid sample that destroys the @PERpairing,).
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If we now have a particle in the normal part of the sample with the engrgye,
wheree < A, and momentunp > p. along thex-axis (a single-particle excitation

with the energye and momentunp), we would naively expect that it reflects back
from the boundary between normal and superfluid parts of the sample because
there are no available single-particle states with such eretgy, in the super-

fluid region. However, this is not possible because the change of the momentum
o p of the patrticle in the transition region can be estimated as

A ¢
Sp~Ft F~=2 t== (3.365)
3 Ve
A A
~ 0~ P2 < e (3.366)

but an ordinary reflection requires

AP|refiection™ 2Pg- (3.367)

So the particle (excitation) cannot be reflected in a normal way and it cannot pen-
etrate either. What happens instead is that the particle picks another one with an
(almost) opposite momentupi < p. to form a GOPERpair with total momen-

tum p— p’ along thex-axis, and this pair penetrates the superfluid regionO.

As aresult, in the normal region< 0 one has a hole in the state with momentum

P’ moving backwards with the velocity which is a gradient of the energy of the
excitationsp, ~ Ve(pg — ') with the respect to its momentump’ (the hole in the

statep’ has momentumg’).

/

Vout = D_p,ep/ ~ —Dp,(VF(pF - P’)) = V;:ﬁ = —V&. (3.368)

(For incoming particle one hag, ~ Op(Ve(p— Pg)) ~ Vg - &) Therefore, we have

a specific form of a reflection (RDREEV reflection) where an incoming particle
reflects as a hole and vice versa. Since the hole has an opposite charge, some
interesting effects happen if a magnetic field is applied - the hole travels the path
backwards until it hits the boundary again where it becomes a patrticle that travels
the same path forward and so on.



Appendix A

General energy-momentum relation

If we have a non interacting gas of particles we can derive a general energy-
momentum relation independent of the statistics involved. We distinguish two
types of particles: those with rest massand relativistic particles like photons
and phonons.

We consider a box with of volum#&” with infinite walls. Particles are described

by plain waves with momenta

whereL is the length of the box.
For each particle the energy-momentum relation can be stated as

P2 o
gp— | M 4 f non _re_la'Flwstlc (A.2)
cp~ 773 relativistic
The general statistical definition for pressure is
d(E) d¢&p
S S A N o A.3
The indexj runs over thay values, e.g. spin projections.
Using (A.2) we can now derive the desired relation
2E 2
= En ~
37 (&~Dp)

This relation is independent of the statistics involved.
This section is based upon [5].
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Appendix B

Calculation for section 3.3.1

To derive equation (3:IR3) we first note, that only excitations with two particles
and two holes can be present, i.e. all excited states are of the form

t LT

plj’apzjapgjap4j’|g> (B.1)

&) =a

- Where\g>Ais the ground state (filledeERMI sphere) — because otherwise every
term in(eH,;|0) would be zero. A
To better distinguish the summations we rewtitg, of (8.111) as

_ / T T B.2
int — z ER aq k’aq kaq kaq Kk ( ’ )
0 0p0s0, K<k ¢ H 2

If we call the denominator of (3 IR we have

Z|<emint‘g>’2: > 2« (B.3)

P1P2P3P4 j< )

H

T T T T
R L R L N )
00,034, k<k ~——
6j’k/ 8P1Q4(17ﬁp1)

! A A A A 2
= 3 > al(glfp,fp,(1-fp,)(1-1p,)[g)| (B.4)
P1P2P3P4 <
! 2 -2 2 2 2
= anp g (1—np,)°(1—np )°[(9|g)| (B.5)
Py P p. p
plpzzp3p4 i<y ‘e ? Voe——

-1
We can drop the squares now becanges {0,1} and thereforél—np ) € {0,1}

and hence, = ny, and(1—np)% = (1-np).

91



Appendix C

Lifetime and Fermis Golden Rule

In section [3:3]2) ERMIs Golden Rule was used. To derive the formula we start
out with the Golden Rule as can be found e.g/in [6]:

e = 2058~ E)|(1U cD

Herel ; is the transition rate from statg to |f) per unit time. The inverse time

is the scattering length.

Our initial statefi) consists of two particles with momentupy (fixed) andp, and

the final state f) also consists of two particles but now with momegtd and

P,’. The matrix element has been calculated[in (1.81). Since we are interested
in the total lifetime (e.g. scattering into any possible state) we have to sum up all
probabilities/rates. Using the value f@(L.83) we can now write

HB=3 Ty c2)
2r [ d%p, d3p, d3p,
- % (27:%3 (27rh1)3 (Znﬁz)s Oerte—ey—&) ‘<51/ B U/[B1P) |2
n(By) (1-n(Py)) (1-n(Py)) (C3)
_2n 1 4Ank?

_ fﬁTa/dszdspl,dgpz, S(e +e—e)— &)
& (PL+ P, — Py — Py)
n(B,) (1—n(p,)) (1—n(By)) - (C.4)

We do not sum (integrate) ov@r because it remains fixed.
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